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Preface 

It gives me great pleasure to present the Special Issue of LNCS Transactions on 
Computational Systems Biology devoted to considerably extended versions of selected 
papers presented at the International Workshop on Bioinformatics Research and 
Applications (IWBRA 2005). The IWBRA workshop was a part of the International 
Conference on Computational Science (ICCS 2005) which took place in Emory 
University, Atlanta, Georgia, USA,  May 22–24, 2005. See http://www.cs.gsu.edu/pan/ 
iwbra.htm for more details.  

The 10 papers selected for the special issue cover a wide range of bioinformatics 
research.  The first papers are devoted to problems in RNA structure prediction: Blin 
et al. contribute to the arc-preserving subsequence problem and Liu et al. develop an 
efficient search of pseudoknots. The coding schemes and structural alphabets for 
protein structure prediction are discussed in the contributions of  Lei  and  Dai, and 
Zheng and Liu, respectively. Song et al. propose a novel technique for efficient 
extraction of biomedical information. Nakhleh and Wang discuss introducing hybrid 
speciation and horizontal gene transfer in phylogenetic networks. Practical algorithms 
minimizing recombinations in pedigree phasing are proposed by Zhang et al. Kolli et 
al. propose a new parallel implementation in OpenMP for finding the edit distance 
between two signed gene permutations. The issue is concluded with two papers 
devoted to bioinformatics problems that arise in DNA microarrays: improved tag set 
design for universal tag arrays is suggested by Mandoiu et al. and a new method of 
gene selection is discussed by Xu and Zhang. 

I am deeply thankful to the organizer and co-chair of IWBRA 2005 Prof. Yi Pan 
(Georgia State University). We were fortunate to have on the Program Committee the 
following distinguished group of researchers: 

Piotr Berman, Penn State University, USA 
Paola Bonizzoni, Università degli Studi di Milano-Bicocca, Italy 
Liming Cai, University of Georgia, USA 
Jake Yue Chen, Indiana University & Purdue University, USA 
Bhaskar Dasgupta, University of Illinois at Chicago, USA 
Juntao Guo, University of Georgia, USA 
Tony Hu, Drexel University, USA 
Bin Ma, University of West Ontario, Canada 
Ion Mandoiu, University of Connecticut, USA 
Kayvan Najarian, University of North Carolina at Charlotte, USA 
Giri Narasimhan, Florida International University, USA 
Jun Ni, University of Iowa, USA 
Mathew Palakal, Indiana University & Purdue University, USA 
Pavel Pevzner, University of California at San Diego, USA 
 



 Preface VI 

Gwenn Volkert, Kent State University, USA 
Kaizhong Zhang, University of West Ontario, Canada  
Wei-Mou Zheng, Chinese Academy of Sciences, China 

June 2005         Alexander Zelikovsky 
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What Makes the

Arc-Preserving Subsequence Problem Hard?�

Guillaume Blin1, Guillaume Fertin1, Romeo Rizzi2, and Stéphane Vialette3

1 LINA - FRE CNRS 2729 Université de Nantes,
2 rue de la Houssinière BP 92208 44322 Nantes Cedex 3 - France

{blin, fertin}@univ-nantes.fr
2 Universit degli Studi di Trento Facolt di Scienze - Dipartimento di Informatica e

Telecomunicazioni Via Sommarive, 14 - I38050 Povo - Trento (TN) - Italy
Romeo.Rizzi@unitn.it

3 LRI - UMR CNRS 8623 Faculté des Sciences d’Orsay, Université Paris-Sud
Bât 490, 91405 Orsay Cedex - France

vialette@lri.fr

Abstract. In molecular biology, RNA structure comparison and motif
search are of great interest for solving major problems such as phylogeny
reconstruction, prediction of molecule folding and identification of com-
mon functions. RNA structures can be represented by arc-annotated se-
quences (primary sequence along with arc annotations), and this paper
mainly focuses on the so-called arc-preserving subsequence (APS) prob-
lem where, given two arc-annotated sequences (S, P ) and (T, Q), we are
asking whether (T, Q) can be obtained from (S, P ) by deleting some of its
bases (together with their incident arcs, if any). In previous studies, this
problem has been naturally divided into subproblems reflecting the in-
trinsic complexity of the arc structures. We show that APS(Crossing,
Plain) is NP-complete, thereby answering an open problem posed in
[11]. Furthermore, to get more insight into where the actual border be-
tween the polynomial and the NP-complete cases lies, we refine the
classical subproblems of the APS problem in much the same way as
in [19] and prove that both APS({�, �}, ∅) and APS({<, �}, ∅) are NP-
complete. We end this paper by giving some new positive results, namely
showing that APS({�}, ∅) and APS({�},{�}) are polynomial time.

Keywords: RNA structures, Arc-Preserving Subsequence problem,
Computational complexity.

1 Introduction

At a molecular state, the understanding of biological mechanisms is subordinated
to the discovery and the study of RNA functions. Indeed, it is established that the
� This work was partially supported by the French-Italian PAI Galileo project number

08484VH and by the CNRS project ACI Masse de Données ”NavGraphe”. A pre-
liminary version of this paper appeared in the Proc. of IWBRA’05, Springer, V.S.
Sunderam et al. (Eds.): ICCS 2005, LNCS 3515, pp. 860-868, 2005.

C. Priami, A. Zelikovsky (Eds.): Trans. on Comput. Syst. Biol. II, LNBI 3680, pp. 1–36, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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conformation of a single-stranded RNA molecule (a linear sequence composed of
ribonucleotides A, U , C and G, also called primary structure) partly determines
the function of the molecule. This conformation results from the folding process
due to local pairings between complementary bases (A−U and C−G, connected
by a hydrogen bond). The secondary structure of an RNA (a simplification of
the complex 3-dimensional folding of the sequence) is the collection of folding
patterns (stem, hairpin loop, bulge loop, internal loop, branch loop and pseudo-
knot) that occur in it.

RNA secondary structure comparison is important in many contexts,
such as:

– identification of highly conserved structures during evolution, non detectable
in the primary sequencewhich is often slightly preserved.These structures sug-
gest a significant common function for the studied RNA molecules [16,18,13,8],

– RNA classification of various species (phylogeny)[4,3,21],
– RNA folding prediction by considering a set of already known secondary

structures [24,14],
– identification of a consensus structure and consequently of a common role

for molecules [22,5].

Structure comparison for RNA has thus become a central computational
problem bearing many challenging computer science questions. At a theoret-
ical level, the RNA structure is often modeled as an arc-annotated sequence,
that is a pair (S, P ) where S is the sequence of ribonucleotides and P rep-
resents the hydrogen bonds between pairs of elements of S. Different pattern
matching and motif search problems have been investigated in the context of
arc-annotated sequences among which we can mention the arc-preserving sub-
sequence (APS) problem, the Edit Distance problem, the arc-substructure
(AST) problem and the longest arc-preserving subsequence (LAPCS) problem
(see for instance [6,15,12,11,2]). For other related studies concerning algorithmic
aspects of (protein) structure comparison using contact maps, refer to [10,17].

In this paper, we focus on the arc-preserving subsequence (APS) problem:
given two arc-annotated sequences (S, P ) and (T, Q), this problem asks whether
(T, Q) can be exactly obtained from (S, P ) by deleting some of its bases together
with their incident arcs, if any. This problem is commonly encountered when one
is searching for a given RNA pattern in an RNA database [12]. Moreover, from
a theoretical point of view, the APS problem can be seen as a restricted ver-
sion of the LAPCS problem, and hence has applications in the structural com-
parison of RNA and protein sequences [6,10,23]. The APS problem has been
extensively studied in the past few years [11,12,6]. Of course, different restric-
tions on arc-annotation alter the computational complexity of the APS problem,
and hence this problem has been naturally divided into subproblems reflecting
the complexity of the arc structure of both (S, P ) and (T, Q): plain, chain,
nested, crossing or unlimited (see Section 2 for details). All of them but
one have been classified as to whether they are polynomial time solvable or NP-
complete. The problem of the existence of a polynomial time algorithm for the
APS(Crossing,Plain) problem was mentioned in [11] as the last open problem
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Table 1. APS problem complexity where n = |S| and m = |T |. � result from this

paper.

APS

Crossing Nested Chain Plain

Crossing NP-complete [6] NP-complete [12] NP-complete �

Nested O(nm) [11]

Chain O(nm) [11] O(n + m) [11]

in the context of arc-preserving subsequences (cf. Table 1). Unfortunately, as we
shall prove in Section 4, the APS(Crossing,Plain) problem is NP-complete
even for restricted special cases.

In analyzing the computational complexity of a problem, we are often trying
to define the precise boundary between the polynomial and the NP-complete
cases. Therefore, as another step towards establishing the precise complexity
landscape of the APS problem, it is of great interest to subdivide the existing
cases into more precise ones, that is to refine the classical complexity levels
of the APS problem, for determining more precisely what makes the problem
hard. For that purpose, we use the framework introduced by Vialette [19] in the
context of 2-intervals (a simple abstract structure for modelling RNA secondary
structures). As a consequence, the number of complexity levels rises from 4 (not
taking into account the unlimited case) to 8, and all the entries of this new
complexity table need to be filled. Previous known results concerning the APS
problem, along with two NP-completeness and two polynomiality proofs, allow
us to fill all the entries of this new table, therefore determining what exactly
makes the APS problem hard.

The paper is organized as follows. In Section 2, we give notations and defi-
nitions concerning the APS problem. In Section 3 we introduce and explain the
new refinements of the complexity levels we are going to study. In Section 4,
we show that the APS({�, �}, ∅) problem is NP-complete thereby proving that
the (classical) APS(Crossing, Plain) problem is NP-complete as well. As
another refinement to that result, we prove that the APS({<, �}, ∅) problem
is NP-complete. Finally, in Section 5, we give new polynomial time solvable
algorithms for restricted instances of the APS(Crossing, Plain) problem.

2 Preliminaries

An RNA structure is commonly represented as an arc-annotated sequence (S, P )
where S is the sequence of ribonucleotides (or bases) and P is the set of arcs
connecting pairs of bases in S. Let (S, P ) and (T, Q) be two arc-annotated se-
quences such that |S| ≥ |T | (in the following, n = |S| and m = |T |). The APS
problem asks whether (T, Q) can be exactly obtained from (S, P ) by deleting
some of its bases together with their incident arcs, if any.
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Since the general problem is easily seen to be intractable [6], the arc structure
must be restricted. Evans [6] proposed four possible restrictions on P (resp. Q)
which were largely reused in the subsequent literature:

1. there is no base incident to more than one arc,
2. there are no arcs crossing,
3. there is no arc contained in another,
4. there is no arc.

These restrictions are used progressively and inclusively to produce five different
levels of allowed arc structure:

– Unlimited - the general problem with no restrictions
– Crossing - restriction 1
– Nested - restrictions 1 and 2
– Chain - restrictions 1, 2 and 3
– Plain - restriction 4

Guo proved in [12] that the APS(Crossing, Chain) problem is
NP-complete. Guo et al. observed in [11] that the NP-completeness of the
APS(Crossing, Crossing) and APS(Unlimited, Plain) easily follows from
results of Evans [6] concerning the LAPCS problem. Furthermore, they gave
a O(nm) time for the APS(Nested, Nested) problem. This algorithm can
be applied to easier problems such as APS(Nested, Chain), APS(Nested,
Plain), APS(Chain, Chain) and APS(Chain,Plain). Finally, Guo et al.
mentioned in [11] that APS(Chain, Plain) can be solved in O(n + m) time.
Until now, the question of the existence of an exact polynomial algorithm for
the problem APS(Crossing, Plain) remained open. We will first show in the
present paper that the problem APS(Crossing,Plain) is NP-complete. Table
1 surveys known and new results for various types of APS. Observe that the
Unlimited level has no restrictions, and hence is of limited interest in our study.
Consequently, from now on we will not be concerned anymore with that level.

3 Refinement of the APS Problem

In this section, we propose a refinement of the APS problem. We first state
formally our approach and explain why such a refinement is relevant for both
theoretical and experimental studies. We end the section by giving easy proper-
ties of the proposed refinement that will prove extremely useful in Section 5.

3.1 Splitting the Levels

As we will show in Section 4, the APS(Crossing, Plain) problem is NP-
complete. That result answers the last open problem concerning the computa-
tional complexity of the APS problem with respect to classical complexity lev-
els, i.e., Plain, Chain, Nested and Crossing (cf. Table 1). However, we are
mainly interested in the elaboration of the precise border between NP-complete
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and polynomially solvable cases. Indeed, both theorists and practitioners might
naturally ask for more information concerning the hard cases of the APS prob-
lem in order to get valuable insight into what makes the problem difficult.

As a next step towards a better understanding of what makes the APS
problem hard, we propose to refine the models which are classically used for
classifying arc-annotated sequences. Our refinement consists in splitting those
models of arc-annotated sequences into more precise relations between arcs. For
example, such a refinement provides a general framework for investigating poly-
nomial time solvable and hard restricted instances of APS(Crossing, Plain),
thereby refining in many ways Theorem 1 (see Section 5).

We use the three relations first introduced by Vialette [19,20] in the context
of 2-intervals (a simple abstract structure for modelling RNA secondary struc-
tures). Actually, his definition of 2-intervals could almost apply in this paper (the
main difference lies in the fact that Vialette used 2-intervals for representing sets
of contiguous arcs). Vialette defined three possible relations between 2-intervals
that can be used for arc-annotated sequences as well. They are the following: for
any two arcs p1 = (i, j) and p2 = (k, l) in P , we will write p1 < p2 if i < j < k < l
(precedence relation), p1 � p2 if k < i < j < l (nested relation) and p1 � p2 if
i < k < j < l (crossing relation). Two arcs p1 and p2 are τ -comparable for some
τ ∈ {<, �, �} if p1τp2 or p2τp1. Let P be a set of arcs and R be a non-empty
subset of {<, �, �}. The set P is said to be R-comparable if any two distinct arcs
of P are τ -comparable for some τ ∈ R. An arc-annotated sequence (S, P ) is said
to be an R-arc-annotated sequence for some non-empty subset R of {<, �, �} if
P is R-comparable. We will write R = ∅ in case P = ∅. Observe that our model
cannot deal with arc-annotated sequences which contain only one arc. However,
having only one arc or none can not really affect the computational complexity
of the problem. Just one guess reduces from one case to the other. Details are
omitted here.

As a straightforward illustration of the above definitions, classical complexity
levels for the APS problem can be expressed in terms of combinations of our
new relations: Plain is fully described by R = ∅, Chain is fully described by
R = {<}, Nested is fully described by R = {<, �} and Crossing is fully
described by R = {<, �, �}. The key point is to observe that our refinement
allows us to consider new structures for arc-annotated sequences, namely R =
{�}, R = {�}, R = {<, �} and R = {�, �}, which could not be considered using
the classical complexity levels. Although other refinements may be possible (in
particular well-suited for parameterized complexity analysis), we do believe that
such an approach allows a more precise analysis of the complexity of the APS
problem.

Of course one might object that some of these subdivisions are unlikely to
appear in RNA secondary structures. While this is true, it is also true that it is
of great interest to answer, at least partly, the following question: Where is the
precise boundary between the polynomial and the NP-complete cases? Indeed,
such a question is relevant for both theoretical and experimental studies.
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For one,many importantoptimizationproblemsareknowntobeNP-complete.
That is, unlessP=NP, there is nopolynomial timealgorithmthatoptimally solves
these on every input instance, and hence proving a problem to be NP-complete is
generally accepted as a proof of its difficulty. However the problem to be solvedmay
bemuchmore specialized than the general one thatwas proved to beNP-complete.
Therefore, during the past three decades, many studies have been devoted to prov-
ingNP-completeness results for highly restricted instances in order to precisely de-
fine the border between tractable and intractable problems. Our refinements have
thus to be seen as another step towards establishing the precise complexity land-
scape of the APS problem.

For another, it is worthwhile keeping in mind that intractability must be
coped with and problems must be solved in practical applications. Computer
science theory has articulated a few general programs for systematically coping
with the ubiquitous phenomena of computational intractability: average case
analysis, approximation algorithm, randomized algorithm and fixed parameter
complexity. Fully understanding where the boundary lies between efficiently solv-
able formulations and intractable ones is another important approach. Indeed,
from an engineering point of view for which the emphasis is on efficiency, that
precise boundary might be a good starting point for designing efficient heuris-
tics or for exploring fixed-parameter tractability. The better our understanding
of the problem, the better our ability in defining efficient algorithms for practical
applications.

3.2 Immediate Results

First, observe that, as in Table 1, we only have to consider cases of APS(R1,R2)
where R1 and R2 are compatible, i.e. R2 ⊆ R1. Indeed, if this is not the case, we
can immediately answer negatively since there exists two arcs in T which satisfy
a relation in R2 which is not in R1, and hence T simply cannot be obtained
from S by deleting bases of S. Those incompatible cases are simply denoted by
hatched areas in Table 2.

Table 2. Complexity results after refinement of the complexity levels. ////: incom-

patible cases. ?: open problems.

APS

����R1

R2 {<, �, �} {�, �} {<, �} {�} {<, �} {�} {<} ∅
{<, �, �} NP-C [6] ? NP-C [12] ? NP-C [12] ? NP-C [12] ?
{�, �} ? //// ? //// ? //// ?
{<, �} ? ? //// //// ? ?
{�} ? //// //// //// ?

{<, �} O(nm) [11] O(nm) [11] O(nm) [11] O(nm) [11]
{�} O(nm) [11] //// O(nm) [11]

{<} O(nm) [11] O(n + m) [11]

∅ O(n + m) [11]
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Some known results allow us to fill many entries of the new complexity table
derived from our refinement. The remainder of this subsection is devoted to
detailing these first easy statements. We begin with an observation concerning
complexity propagation properties of the APS problems in our refined model.

Observation 1. Let R1, R2, R′
1 and R′

2 be four subsets of {<, �, �} such that
R′

2 ⊆ R2 ⊆ R1 and R′
2 ⊆ R′

1 ⊆ R1. If APS(R′
1, R′

2) is NP-complete (resp.
APS(R1, R2) is polynomial time solvable) then so is APS(R1, R2) (resp.
APS(R′

1, R′
2)).

On the positive side, Gramm et al. have shown that APS(Nested, Nested)
is solvable in O(nm) time [11]. Another way of stating this is to say that
APS({<, �}, {<, �}) is solvable in O(mn) time. That result together with Ob-
servation 1 may be summarized by saying that APS(R1, R2) for any compatible
R1 and R2 such that �/∈ R1 and �/∈ R2 is polynomial time solvable.

Conversely, the NP-completeness of APS(Crossing,Crossing) has
been proved by Evans [6]. A simple reading shows that her proof is
concerned with {<, �, �}-arc-annotated sequences, and hence she actually proved
that APS({<, �, �}, {<, �, �}) is NP-complete. Similarly, in proving that
APS(Crossing, Chain) is NP-complete [12], Guo actually proved that
APS({<, �, �}, {<}) is NP-complete. Note that according to Observation 1,
this latter result implies that APS({<, �, �}, {<, �}) and APS({<, �, �},
{<, �}) are NP-complete.

Table 2 surveys known and new results for various types of our refined APS
problem. Observe that this paper answers all questions concerning the APS
problem with respect to the new complexity levels.

4 Hardness Results

We show in this section that APS({�, �}, ∅) is NP-complete thereby proving
that the (classical) APS(Crossing, Plain) problem is NP-complete. That re-
sult answers an open problem posed in [11], which was also the last open problem
concerning the computational complexity of the APS problem with respect to
classical complexity levels, i.e., Plain, Chain, Nested and Crossing (cf. Ta-
ble 1). Furthermore, we prove that the APS({<, �}, ∅) is NP-complete as well.

We provide a polynomial time reduction from the 3-Sat problem: Given a
set Vn of n variables and a set Cq of q clauses (each composed of three literals)
over Vn, the problem asks to find a truth assignment for Vn that satisfies all
clauses of Cq. It is well-known that the 3-Sat problem is NP-complete [9].

It is easily seen that the APS({�, �}, ∅) problem is in NP. The remainder of
the section is devoted to proving that it is also NP-hard. Let Vn = {x1, x2, ...xn}
be a finite set of n variables and Cq = {c1, c2, . . . , cq} a collection of q clauses.
Observe that there is no loss of generality in assuming that, in each clause, the
literals are ordered from left to right, i.e., if ci = (xj ∨ xk ∨ xl) then j < k < l.
Let us first detail the construction of the sequences S and T :
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S = Ss
x1

A Ss
x1

Ss
x2

A Ss
x2

. . . Ss
xn

A Ss
xn

Sc1 Sc2 . . . Scq Se
x1

Se
x2

. . . Se
xn

T = T s
x1

T s
x2

. . . T s
xn

Tc1 Tc2 . . . Tcq T e
x1

T e
x2

. . . T e
xn

We now detail the subsequences that compose S and T . Let γm (resp. γm)
be the number of occurrences of literal xm (resp. xm) in Cq and let km =
max(γm, γm). For each variable xm ∈ Vn, 1 ≤ m ≤ n, we construct words
Ss

xm
= ACkm , Ss

xm
= CkmA and T s

xm
= ACkmA where Ckm represents a word

of km consecutive bases C. For each clause ci of Cq, 1 ≤ i ≤ q, we construct words
Sci = UGGGA and Tci = UGA. Finally, for each variable xm ∈ Vn, 1 ≤ m ≤ n,
we construct words Se

xm
= UUA and T e

xm
= UA.

Having disposed of the two sequences, we now turn to defining the corre-
sponding two arc structures (see Figure 1). In the following, Seq[i] will denote the
ith base of a sequence Seq and, for any 1 ≤ m ≤ n, lm = |Ss

xm
|. For all 1 ≤ m ≤ n,

we create the two following arcs: (Ss
xm

[1],Se
xm

[1]) and (Ss
xm

[lm],Se
xm

[2]). For each
clause ci of Cq, 1 ≤ i ≤ q, and for each 1 ≤ m ≤ n, if the kth (i.e. 1st, 2nd or
3rd) literal of ci is xm (resp. xm) then we create an arc between any free (i.e.
not already incident to an arc) base C of Ss

xm
(resp. Ss

xm
) and the kth base G

of Sci (note that this is possible by definition of Ss
xm

, Ss
xm

and Sci). On the
whole, the instance we have constructed is composed of 3q +2n arcs. We denote
by APS-cp-construction any construction of this type. In the following, we will
distinguish arcs between bases A and U , denoted by AU -arcs, from arcs between
bases C and G, denoted by CG-arcs. An illustration of an APS-cp-construction
is given in Figure 1. Clearly, our construction can be carried out in polyno-
mial time. Moreover, the result of such a construction is indeed an instance of
APS({�, �}, ∅), since Q = ∅ (no arc is added to T ) and P is a {�, �}-comparable
set (since there are no arcs {<}-comparable.

We begin by proving a canonicity lemma of an APS-cp-construction.

Lemma 1. Let (S, P ) and (T, Q) be any two arc-annotated sequences obtained
from an APS-cp-construction. If (T, Q) can be obtained from (S, P ) by deleting

Fig. 1. Example of an APS-cp-construction with Cq = (x2 ∨x3 ∨x4)∧ (x1 ∨x2 ∨x3)∧
(x2 ∨ x3 ∨ x4)
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some of its bases together with their incident arcs, if any, then for each 1 ≤ i ≤ q
and 1 ≤ m ≤ n:

1. Tci is obtained from Sci by deleting two of its three bases G,
2. T e

xm
is obtained from Se

xm
by deleting one of its two bases U,

3. T s
xm

is obtained from Ss
xm

ASs
xm

by deleting either Ss
xm

or Ss
xm

.

Proof. Let (S, P ) and (T, Q) be two arc-annotated sequences resulting from an
APS-cp-construction.
(1) By construction, the first base U appearing in S (resp. T ) is Sc1 [1] (resp.
Tc1 [1]). Thus, Tc1[1] is obtained from a base U of S at, or after, Sc1 [1]. Moreover,
the number of bases A appearing after Sc1 [1] in S is equal to the number of bases
A appearing after Tc1[1] in T . Therefore, every base A appearing after Sc1 [1] and
Tc1 [1] must be matched. That is, for each 1 ≤ i ≤ q, Tci[3] is matched to Sci [5].
In particular, Tcq [3] is matched to Scq [5]. But since there are as many bases U
between Sc1 [1] and Scq [5] as there are between Tc1 [1] and Tcq [3], any base U in
this interval in S must be matched to any base U in this interval in T ; that is,
for any 1 ≤ i ≤ q, Tci [1] is matched to Sci [1]. Thus, we conclude that for any
1 ≤ i ≤ q, Tci is obtained by deleting two of the three bases G of Sci .
(2) By the above argument concerning the bases A appearing after Sc1 [1] and
Tc1 [1], we know that if (T, Q) can be obtained from (S, P ), then T e

xm
[2] is matched

to Se
xm

[3] for any 1 ≤ m ≤ n. Thus, for any 1 ≤ m ≤ n, T e
xm

is obtained from
Se

xm
, and in particular T e

xm
[1] is matched to either Se

xm
[1] or Se

xm
[2].

(3) By definition, as there is no arc incident to bases of T , at least one base
incident to every arc of P has to be deleted. We just mentioned that T e

xm
[1] is

matched to either Se
xm

[1] or Se
xm

[2] for any 1 ≤ m ≤ n. Thus, since by construc-
tion there is an arc between Se

xm
[1] and Ss

xm
[1] (resp. Se

xm
[2] and Ss

xm
[lm]), for

any 1 ≤ m ≤ n either Ss
xm

[1] or Ss
xm

[lm] has to be deleted; and all these arcs
connect a base A appearing before Sc1 [1] to a base U appearing after Scq [5].
Therefore, for any 1 ≤ m ≤ n a base A appearing before Sc1 [1] in S is deleted.
Originally, there are 3n bases A appearing before Sc1 [1] in S and 2n appearing
before the first base of Tc1 [1] in T . Thus, the number of bases A matched in S
and appearing before Sc1 [1] is equal to the number of bases A appearing before
Tc1 [1] in T . But since, for each 1 ≤ m ≤ n, a base A of either Ss

xm
or Ss

xm
is

deleted, we conclude that for each 1 ≤ m ≤ n, T s
xm

is obtained from Ss
xm

ASs
xm

,
by deleting either Ss

xm
or Ss

xm
. �	

We now turn to proving that our construction is a polynomial time reduction
from 3-Sat to APS(Crossing, Plain).

Lemma 2. Let I be an instance of the problem 3-Sat with n variables and q
clauses, and I ′ an instance ((S, P ); (T, Q)) of APS({�, �}, ∅) obtained by an
APS-cp-construction from I. An assignment of the variables that satisfies the
boolean formula of I exists iff T is an Arc-Preserving Subsequence of S.

Proof. (⇒) Suppose we have an assignment AS of the n variables that satisfies
the boolean formula of I. By definition, for each clause there is at least one literal
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that satisfies it. In the following, ji will define, for any 1 ≤ i ≤ q, the smallest
index of the literal of ci (i.e. 1, 2 or 3) which, by its assignment, satisfies ci. Let
(S, P ) and (T, Q) be two sequences obtained from an APS-cp-construction from
I. We look for a set B of bases to delete from S in order to obtain T . For each
variable xm ∈ AS with 1 ≤ m ≤ n, we define B as follows:

– if xm = True then B contains each base of Ss
xm

and Se
xm

[1],
– if xm = False then B contains each base of Ss

xm
and Se

xm
[2],

– if ji = 1 then B contains Sci [3] and Sci [4],
– if ji = 2 then B contains Sci [2] and Sci [4],
– if ji = 3 then B contains Sci [2] and Sci [3].

Since a variable has a unique value (i.e. True or False), either each base of
Ss

xm
and Se

xm
[1] or each base of Ss

xm
and Se

xm
[2] are in B for all 1 ≤ m ≤ n.

Thus, B contains at least one base in S of any AU -arc of P .
For any 1 ≤ i ≤ q, two of the three bases G of Sci are in B. Thus, B contains

at least one base in S of two thirds of the CG-arcs of P . Moreover, Sci [ji + 1] is
the base G that is not in B. We suppose in the following that the jth

i literal of
the clause ci is xm, with 1 ≤ m ≤ n. Thus, by the way we build the APS-cp-
construction, there is an arc between a base C of Ss

xm
and Sci [ji + 1] in P . By

definition, if AS is an assignment of the n variables that satisfies the boolean
formula, AS satisfies ci and thus xm = True. We mentioned, in the definition
of B that if xm = True then each base of Ss

xm
is in B. Thus, the base C of Ss

xm

incident to the CG-arc in P with Sci [ji +1] is in B. A similar result can be found
if the jth

i literal of the clause ci is xm. Thus, B contains at least one base in S
of any CG-arc of P .

If S′ is the sequence obtained from S by deleting all the bases of B together
with their incident arcs, then there is no arc in S′ (i.e. neither AU -arcs or CG-
arcs). By the way we define B, S′ is obtained from S by deleting all the bases of
either Ss

xm
or Ss

xm
, two bases G of Sci and either Se

xm
[1] or Se

xm
[2], for 1 ≤ i ≤ q

and 1 ≤ m ≤ n. According to Lemma 1, it is easily seen that sequence S′

obtained is similar to T .
(⇐) Let I be an instance of the problem 3-Sat with n variables and q clauses.

Let I ′ be an instance ((S, P ); (T, Q)) of APS({�, �}, ∅) obtained by an APS-
cp-construction from I such that (T, Q) can be obtained from (S, P ) by deleting
some of its bases (i.e. a set of bases B) together with their incident arcs, if any.
By Lemma 1, either all bases of Ss

xm
or all bases of Ss

xm
are in B. Consequently,

for 1 ≤ m ≤ n, we define an assignment AS of the n variables of I as follows:

– if all bases of Ss
xm

are in B then xm = True,
– if all bases of Ss

xm
are in B then xm = False.

Now, let us prove that for any 1 ≤ i ≤ q the clause ci is satisfied by AS. By
Lemma 1, for any 1 ≤ i ≤ q there is a base G of substring Sci (say the ji + 1th)
that is not in B. By the the way we build the APS-cp-construction, there is a
CG-arc in P between Sci [ji +1] and a base C of Ss

xm
(resp. Ss

xm
) if the jth

i literal
of ci is xm (resp. xm).
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Suppose, w.l.o.g., that the jth
i literal of ci is xm. Since Q is an empty set, at

least one base of any arc of P is in B. Thus, the base C of Ss
xm

incident to the
CG-arc in P with Sci [ji +1] is in B (since Sci [ji +1] �∈ B). Therefore, by Lemma
1, all the bases of Ss

xm
are in B. By the way we define AS, xm = True and thus

ci is satisfied. The same conclusion can be similarly derived if the jth
i literal of

ci is xm. �	

We have thus proved the following theorem.

Theorem 1. The APS({�, �}, ∅) problem is NP-complete.

It follows immediately from Theorem 1 that the APS({<, �, �}, ∅) problem,
and hence the classical APS(Crossing, Plain) problem, is NP-complete.

One might naturally ask for more information concerning the hard cases of
the APS problem in order to get valuable insight into what makes the problem
difficult. Another refinement of Theorem 1 is given by the following theorem.

Theorem 2. The APS({<, �}, ∅) problem is NP-complete.

As for Theorem 1, the proof is by reduction from the 3-Sat problem. It is
easily seen that the APS({<, �}, ∅) problem is in NP. The remainder of this
section is devoted to proving that it is also NP-hard. Let Vn = {x1, x2, ...xn}
be a finite set of n variables and Cq = {c1, c2, . . . , cq} a collection of q clauses.
The instance of the APS({<, �}, ∅) problem we will build is decomposed in two
parts: a Truth Setting part and a Checking part. For readability, we denote by
APS2-cp-construction any construction of the type described hereafter. More-
over, we will present separately the Truth Setting part and the Checking part :
first, we will describe the Truth Setting part, then the Checking part and end by
the description of the set of arcs connecting those two parts. Indeed, the instance
of the APS({<, �}, ∅) problem will be the concatenation of those two parts.

Truth Setting part
Let us first detail the construction of sequences S′ and T ′ of the Truth Setting

part :
Sα Sβ

S′ =
︷ ︸︸ ︷
Se

x1
Se

x2
. . . Se

xn
GGG

︷ ︸︸ ︷
Ss

x1
A Ss

x1
Ss

x2
A Ss

x2
. . . Ss

xn
A Ss

xn

T ′ = T e
x1

T e
x2

. . . T e
xn︸ ︷︷ ︸ GGG T s

x1
T s

x2
. . . T s

xn︸ ︷︷ ︸
Tα′ Tβ′

We now detail subsequences that compose S′ and T ′. Let γm (resp. γm) be the
number of occurrences of literal xm (resp. xm) in Cq and let km = max(γm, γm).
For each variable xm ∈ Vn, we construct substrings Se

xm
= UUA, T e

xm
= UA,

Ss
xm

= ACkm , Ss
xm

= CkmA and T s
xm

= ACkmA, where Ckm represents a
substring of km consecutive bases C. Having disposed of the two sequences, we
now turn to defining the corresponding arc structure (see Figure 2). For all 1 ≤
m ≤ n, we create the two following arcs: (Se

xm
[1],Ss

xm
[1]) and (Se

xm
[2],Ss

xm
[km +

1]). Remark that, by now, all the arcs defined are {�}-comparable.
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Fig. 2. The truth setting part of an APS2-cp-construction with Cq = (x2 ∨ x3 ∨ x4) ∧
(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4)

Checking part
Let us now detail the construction of sequences Sζ and Tζ′ of the Checking

part :

S1 S1 Sq Sq

Sζ = U
︷ ︸︸ ︷
S1

x1
S1

x2
...S1

xn
U

︷ ︸︸ ︷
S1

x1
S1

x2
...S1

xn
U...U

︷ ︸︸ ︷
Sq

x1
Sq

x2
...Sq

xn
U

︷ ︸︸ ︷
Sq

x1
Sq

x2
...Sq

xn
U

Tζ′ = U T 1 U T 1 U...U T q U T q U

We now detail subsequences that compose Sζ and Tζ′ . For any 1 ≤ m ≤ n
and any 1 ≤ i ≤ q, let γi

m (resp. γi
m) be the number of occurrences of literal xm

(resp. xm) in the set of clauses cj with i < j ≤ q and let λi
m = γi

m + γi
m. For any

1 ≤ m ≤ n and for any 1 ≤ i ≤ q, let yi
m = 1 if xm ∈ ci, yi

m = 0 otherwise. For
any 1 ≤ m ≤ n and for any 1 ≤ i ≤ q, let yi

m = 1 if xm ∈ ci, yi
m = 0 otherwise.

For any 1 ≤ m ≤ n and 1 ≤ i ≤ q, we construct substrings:

Si
xm

= (GGA)λi
m+yi

m(GA)yi
m(GGA)λi

m+yi
m(GA)yi

m

Si
xm

= (CCA)λi
m (CA)yi

m(CCA)λi
m (CA)yi

m

T i = (GA)4+6q−6i

T i = (CA)2+6q−6i

For example, assuming that Cq = (x2∨x3∨x4)∧(x1∨x2∨x3)∧(x2∨x3∨x4)
we have, among others, the following segments:

S1
x1

= (GGA)1(GA)0(GGA)1(GA)0 = GGA GGA

S1
x2

= (GGA)2(GA)1(GGA)3 = GGA GGA GA GGA GGA GGA

S2
x3

= (CCA)1(CA)0(CCA)1(CA)1 = CCA CCA CA
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T 2 = (GA)4+6∗3−6∗2 = GA GA GA GA GA GA GA GA GA GA

T 3 = (CA)2+6∗3−6∗3 = CA CA

Having disposed of the two sequences, we now turn to defining the corre-
sponding arc structure (see Figure 3). By construction, Si

xm
(resp. Si

xm
) is com-

posed of substrings GA and GGA (resp. CA and CCA). We denote by repeater
any substring GGA or CCA. We denote by terminal any substring GA or CA
which is not part of a repeater. Let term(i, m, j) (resp. rep(i, m, j)) be the jth

terminal (resp. repeater) of Si
xm

, and let term(i, m, j) (resp. rep(i, m, j)) be the
jth terminal (resp. repeater) of Si

xm
.

For all 1 ≤ m ≤ n, 1 ≤ j ≤ 2λi
m + 1 and 1 ≤ i < q, we create the following

arcs:

– an arc between the second base G of rep(i, m, j) and the first base C of the
jth element (i.e. either a terminal or a repeater) of Si

xm
;

– an arc between the second base C of rep(i, m, j) and the first base G of the
jth element of Si+1

xm
.

Final Construction
Final sequences S and T are respectively obtained by concatenating S′ with

Sζ and T ′ with Tζ′ . Moreover, we create, for all 1 ≤ m ≤ n and all 1 ≤ j ≤
γm + γm, an arc between the jth base C of substring Ss

xm
ASs

xm
in S′ and the

first base G of the jth element of S1
xm

in Sζ . In the rest of the paper, Si will
refer to Si

x1
Si

x2
. . . Si

xn
and Si will refer to Si

x1
Si

x2
. . . Si

xn
.

In the following, we will show that P is {<, �}-comparable. Let a1 and a2 be
any two arcs connecting a base of Sβ to a base of Sζ . As all the arcs connecting
a base of Sβ to a base of Sζ are of the same form, we consider, w.l.o.g. that:

– for a given j and a given 1 ≤ m ≤ n, a1 is the arc which connects the jth

base C of substring Ss
xm

ASs
xm

to the first base G of the jth element of S1
xm

;
– for a given k and a given 1 ≤ m′ ≤ n, a2 is the arc which connects the

kth base C of substring Ss
xm′ ASs

xm′ to the first base G of the kth element of
S1

xm′ ;
– j < k.

We now consider the three following cases: (i) m = m′, (ii) m < m′ and
(iii) m > m′. Suppose m = m′. As j < k, the jth base C precedes the kth

base C of substring Ss
xm

ASs
xm

. Moreover, the first base G of the jth element of
S1

xm
precedes the first base G of the kth element of S1

xm
. Thus, a1 and a2 are

{�}-comparable.
Suppose now m < m′. Then, the jth base C of substring Ss

xm
ASs

xm
precedes

the kth base C of substring Ss
xm′ASs

xm′ . Moreover, the first base G of the jth

element of S1
xm

precedes the first base G of the kth element of S1
xm′ . Thus, a1

and a2 are {�}-comparable. The case where m > m′ is fully similar. Therefore,
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Fig. 3. Example of an APS2-cp-construction with Cq = (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨
x3) ∧ (x2 ∨ x3 ∨ x4)
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given two arcs a1 and a2 connecting a base of Sβ and a base of Sζ , a1 and a2

are {�}-comparable, and thus, {<, �}-comparable.
Let a1 and a2 be any two arcs connecting two bases of Sζ . There are two

types of arcs connecting two bases of Sζ :

1. arcs connecting, for a given 1 ≤ i ≤ q and a given j, a base of the jth repeater
of Si to a base of the jth element of Si;

2. arcs connecting, for a given 1 ≤ i < q and a given j, a base of the jth repeater
of Si to a base of the jth element of Si+1.

By definition, a1 and a2 can be either of type 1 or type 2. Since the cases where
a1 and a2 are of different types are fully similar, we detail hereafter three cases:
(a) a1 and a2 are of type 1, (b) a1 is of type 1 and a2 is of type 2, and (c) a1

and a2 are of type 2.

(a) Suppose that a1 and a2 are of type 1. Since a2 is of type 1, a2 connects, for
a given 1 ≤ i′ ≤ q and a given k, a base of the kth repeater of Si′ to a base
of the kth element of Si′ . Suppose, w.l.o.g., that j < k. By construction,
if i �= i′ then either a1 precedes a2 or a2 precedes a1. Therefore, if i �= i′

then a1 and a2 are {<}-comparable. Moreover, if i = i′ then a1 and a2 are
{�}-comparable.

(b) Suppose that a1 is of type 1 and a2 is of type 2. Since a2 is of type 2, a2

connects, for a given 1 ≤ i′ ≤ q and a given k, a base of the kth repeater
of Si′ to a base of the kth element of Si′+1. By construction, if i �= i′ then
either a1 precedes a2 or a2 precedes a1. Therefore, if i �= i′ then a1 and
a2 are {<}-comparable. Consider now the case where i = i′. Suppose first
that j < k. If i = i′ then, as Si precedes Si+1 and j < k, a1 and a2 are
{<}-comparable. Suppose now that j > k. If i = i′ then, as Si precedes Si+1

and k < j, a1 and a2 are {�}-comparable.
(c) Suppose that a1 and a2 are of type 2. Since a2 is of type 2, a2 connects, for

a given 1 ≤ i′ ≤ q and a given k, a base of the kth repeater of Si′ to a base
of the kth element of Si′+1. Suppose, w.l.o.g., that j < k. By construction,
if i �= i′ then either a1 precedes a2 or a2 precedes a1. Therefore, if i �= i′

then a1 and a2 are {<}-comparable. Moreover, if i = i′ then a1 and a2 are
{�}-comparable.

Therefore, given two arcs a1 and a2 connecting two bases of Sζ , a1 and
a2 are {<, �}-comparable. We now turn to proving that the set P is {<, �}-
comparable. Notice, first, that there is no arc connecting two bases of Sβ (resp.
Sα). We proved previously that given two arcs a1 and a2 connecting a base of Sβ

and a base of Sζ , a1 and a2 are {<, �}-comparable. Finally, we proved that given
two arcs a1 and a2 connecting a base of Sα and a base of Sβ , a1 and a2 are {�}-
comparable.Therefore, the set of arcs starting in Sα

⋃
Sβ is {<, �}-comparable.

Let aζ = (u′, v′), where u′ and v′ are bases, denote the arc connecting a
base of Sβ to a base of Sζ and which ends the last. By construction, all the arcs
connecting two bases of Sζ are ending after v′. Therefore, the set of arcs in S
(i.e. the set P ) is {<, �}-comparable.
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A full illustration of an APS2-cp-construction is given in Figure 3. Clearly,
our construction can be carried out in polynomial time. Moreover, the result of
such a construction is indeed an instance of APS({<, �}, ∅), since Q = ∅ (no arc
is added to T ) and P is a {<, �}-comparable set of arcs.

Let (S, P ) and (T, Q) be two sequences obtained from an APS2-cp-
construction. In the following, we will give some technical lemmas that will
be useful for the comprehension of proof of Theorem 2.

Definition 1. A canonical alignment of two sequences (S, P ) and (T, Q) ob-
tained from an APS2-cp-construction is an alignment where, for any 1 ≤ i ≤ q
and 1 ≤ m ≤ n:

– any base of Se
xm

is either matched with a base of T e
xm

or deleted,
– either each base of Ss

xm
A is matched with a base of T s

xm
and all bases of

Ss
xm

are deleted, or each base of ASs
xm

is matched with a base of T s
xm

and
all bases of Ss

xm
are deleted,

– any base of Si is either matched with a base of T i or deleted,
– any base of Si is either matched with a base of T i or deleted.

Lemma 3. Let (S, P ) and (T, Q) be two sequences obtained from an APS2-
cp-construction. If (T, Q) is an arc-preserving subsequence of (S, P ) then any
corresponding alignment is canonical.

Proof. Suppose (T, Q) is an arc-preserving subsequence of (S, P ). Let A denote
any corresponding alignment. In T , there is a substring GGG between Tα′ and
Tβ′ . In S, bases G are present either between Sα and Sβ, or in Sζ . The number
of bases U in Sζ and in Tζ′ is equal. Moreover, in both Sζ and Tζ′ the first (i.e.
leftmost) base is a base U . Therefore, in A, none of the bases of the substring
GGG in T between Tα′ and Tβ′ can be matched to a base G of Sζ since, in that
case, at least one base U of Tζ′ would not be matched. Thus, in A, substring
GGG of S has to be matched with substring GGG of T and Tα′ must be matched
with substrings of Sα.

Moreover, the number of bases U in Sζ and in Tζ′ is equal; besides, in Sβ and
Tβ′ there is no base U . Thus, Tβ′ (resp. Tζ′) must be matched with substrings
of Sβ (resp. Sζ). Therefore, we will consider the three cases (Sα/Tα′ , Sβ/Tβ′ ,
Sζ/Tζ′) separately.

Consider Sα and Tα′ . There are exactly n bases A both in Sα and Tα′ .
Consequently, in A, for all 1 ≤ m ≤ n, Se

xm
has to be matched with T e

xm
. More

precisely, T e
xm

[1] has to be matched to either Se
xm

[1] or Se
xm

[2] for all 1 ≤ m ≤ n.
Consider Sβ and Tβ′ . By definition, as Q = ∅, at least one base incident

to every arc of P has to be deleted. We just mentioned that T e
xm

[1] has to be
matched to either Se

xm
[1] or Se

xm
[2] for any 1 ≤ m ≤ n. Thus, since by construc-

tion there is an arc between Se
xm

[1] and Ss
xm

[1] (resp. Se
xm

[2] and Ss
xm

[km + 1]),
for any 1 ≤ m ≤ n, either Ss

xm
[1] or Ss

xm
[km + 1] is deleted. Therefore, n bases

A appearing in Sβ are deleted. Note that there are 3n bases A in Sβ and 2n in
Tβ′ . Thus, the number of bases A not deleted in Sβ is equal to the number of
bases A in Tβ′. Since, for each 1 ≤ m ≤ n, a base A of either Ss

xm
or Ss

xm
is
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deleted, we conclude that for each 1 ≤ m ≤ n, T s
xm

is obtained from Ss
xm

ASs
xm

,
by deleting all bases of either Ss

xm
or Ss

xm
.

Consider Sζ and Tζ′ . By construction, there are 2q + 1 bases U in Sζ and in
Tζ′ . Thus, in A, the 2q + 1 bases U of Sζ have to be matched with the 2q + 1
bases U of Tζ′ . Therefore, in A, for any 1 ≤ i ≤ q, any base of Si is either
matched with a base of T i or deleted, and any base of Si is either matched with
a base of T i or deleted. �	

In the following, given an alignment A of S and T , if the first base of a
terminal is matched (resp. deleted) in A then the corresponding terminal will
be denoted as active (resp. inactive). Similarly, a repeater is said to be inactive
(resp. active) when its two first bases (resp. exactly one out of its two first
bases) are deleted in A. Notice that the case where none of the two first bases
of a repeater is deleted in A is not considered.

Notice that, by construction, for any 1 ≤ i ≤ q, there are no two consecutive
bases G in Tζ′ , and there are no two consecutive bases C in Tζ′ . Thus, at least
one out of any two consecutive bases C or G of Sζ is deleted in A. Therefore,
given a canonical alignment, for any repeater of S, either the repeater is active
or all its bases C or G are deleted.

Lemma 4. Let (S, P ) and (T, Q) be two sequences obtained from an APS2-cp-
construction. If (T, Q) is an arc-preserving subsequence of (S, P ), then for any
corresponding alignment A and for any 1 ≤ i ≤ q, one of the three following
cases must occur:

– all the repeaters and one terminal of Si are active,
– all the repeaters but one and two terminals of Si are active,
– all the repeaters but two and three terminals of Si are active.

Proof. By Lemma 3, A is canonical. Moreover, by definition, in any canonical
alignment, for all 1 ≤ i ≤ q, any base of Si is either matched with a base of T i

or deleted. Let ωj (resp. ω′
j ) denote the jth element of Si (resp. T i).

By construction, in T i, there are two bases A less than in Si. Therefore, we
know that in A, all the bases A of Si but two will be matched. Let ωk and
ωl, with k < l, denote the two elements of Si which contain the deleted bases
A. There are two cases, as illustrated in Figure 4: either (a) l = k + 1 or (b)
l > k + 1. Let us consider those two cases separately.

(a) Suppose l = k + 1 (i.e. ωk and ωl are consecutive). In that case, since
all the bases A but two will be matched in Si, the base A of ωk−1 (resp. ωl+1)
is matched with a base A of an element of T i, say ω′

m (resp. ω′
m+1). Therefore,

the base G of ω′
m+1 is either matched with a base of ωk, ωl or ωl+1. In each of

those cases, all the elements but two of Si are active.
(b) Suppose l > k +1 (i.e. ωk and ωl are not consecutive). In that case, since

all the bases A but two will be matched in Si, the base A of ωk−1 (resp. ωk+1) is
matched with a base A of an element of T i, say ω′

m (resp. ω′
m+1). Similarly, the

base A of ωl−1 (resp. ωl+1) is matched with a base A of an element of T i, say ω′
p

(resp. ω′
p+1). Therefore, the base G of ω′

m+1 (resp. ω′
p+1) is either matched with
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Fig. 4. Illustration of Lemma 4. (a) l = k + 1 or (b) l > k + 1.

a base of ωk or ωk+1 (resp. ωl or ωl+1). In each of those cases, all the elements
but two of Si are active.

Therefore, either two terminals, or one repeater and one terminal, or two
repeaters of Si are inactive. �	

Lemma 5. Let (S, P ) and (T, Q) be two sequences obtained from an APS2-cp-
construction. If (T, Q) is an arc-preserving subsequence of (S, P ), then for any
corresponding alignment A, all the repeaters and two terminals of S1 are active.

Proof. Note that in this lemma, we focus on the first clause (i.e. c1). c1 is defined
by three literals (say xi, xj and xk). Since c1 is equal to the disjunction of
variables built with xi, xj and xk, c1 can have eight different forms, because
each literal can appear in either its positive (xi) or negative (xi) form. In the
following, we suppose, to illustrate the proof, that c1 = (xi∨xj∨xk) as illustrated
in Figure 5. The other cases will not be considered here, but can be treated
similarly.

By Lemma 3, A is canonical. Moreover, by definition, in any canonical
alignment, for all 1 ≤ i ≤ q, any base of Si is either matched with a base
of T i or deleted. We recall that ωj (resp. ω′

j ) denotes the jth element of Si

(resp. T i).
By construction, in T 1, there is one base A less than in S1. Therefore, we

know that in A, all the bases A of S1 but one will be matched. Let ωk denote
the element of S1 which contains the deleted base A. Since all the bases A of
S1 but two will be matched, the base A of ωk−1 (resp. ωk+1) is matched with a
base A of an element of T 1, say ω′

m (resp. ω′
m+1). Therefore, the base C of ω′

m+1

is either matched with a base of ωk or ωk+1. Consequently, all the elements but
one of S1 are active.

To prove that the inactive element is a terminal, we suppose, by contra-
diction, that one repeater of S1 is inactive. Therefore, the three terminals of
{S1

xi
, S1

xj
, S1

xk
} are active. Moreover, by Lemma 4, either:

1. all the repeaters of S1 and one terminal of {S1
xi

, S1
xj

, S1
xk
} are active,

2. all the repeaters but one of S1 and two terminals of {S1
xi

, S1
xj

, S1
xk
} are ac-

tive,
3. all the repeaters but two of S1 and three terminals of {S1

xi
, S1

xj
, S1

xk
} are

active.
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Fig. 5. Part of an APS2-cp-construction corresponding to a clause c1 = (xi ∨xj ∨xk).

Bold arcs correspond to the different cases studied in Lemma 5.



20 G. Blin et al.

Let us consider those three cases separately:

(1) Suppose that all the repeaters of S1 and one terminal of {S1
xi

, S1
xj

, S1
xk
} are

active. The active terminal can be in either S1
xi

, S1
xj

or S1
xk

. We recall that
the clause considered is c1 = (xi ∨ xj ∨ xk). Since the cases where the active
terminal is either in S1

xi
or S1

xj
are fully similar, we detail hereafter only two

cases: (a) the active terminal is in S1
xi

and (b) the active terminal is in S1
xk

.
(a) Suppose that the active terminal is in S1

xi
. By construction, there is a

repeater rep of S1
xi

such that (δ, rep[1]) ∈ P , (rep[2], θ) ∈ P where δ

(resp. θ) is a base C of Ss
xi

(resp. the first base of the terminal in S1
xi

),
as illustrated in Figure 5. Since, by hypothesis, the three terminals of
{S1

xi
, S1

xj
, S1

xk
} are active, then θ is matched. By definition, as Q = ∅,

at least one base incident to every arc of P has to be deleted. There-
fore, rep[2] is deleted. Since rep is an active repeater, rep[1] is matched.
Thus, δ is deleted. Moreover, by construction, there is an arc between
a base C of Ss

xi
and the first base of the terminal in S1

xi
(cf. Figure 5).

Therefore, since the first base of terminal in S1
xi

is matched (because we
supposed that the active terminal is in S1

xi
), a base C of Ss

xi
is deleted.

Thus, a base of both Ss
xi

and Ss
xi

is deleted. Therefore, by Definition 1,
the alignment is not canonical, a contradiction.

(b) Suppose now that the active terminal is in S1
xk

. By construction, there
is a repeater rep of S1

xk
such that (δ, rep[1]) ∈ P , (rep[2], θ) ∈ P where δ

(resp. θ) is a base C of Ss
xk

(resp. the first base of the terminal in S1
xk

),
as illustrated in Figure 5. Since, by hypothesis, the three terminals of
{S1

xi
, S1

xj
, S1

xk
} are active, then θ is matched. By definition, as Q = ∅, at

least one base incident to every arc of P has to be deleted. Therefore,
rep[2] is deleted. Since rep is an active repeater, rep[1] is matched. Thus,
δ is deleted. Moreover, by construction, there is an arc between a base C
of Ss

xk
and the first base of the terminal in S1

xk
(cf. Figure 5). Therefore,

since the first base of terminal in S1
xk

is matched (because we supposed
that the active terminal is in S1

xk
), a base C of Ss

xk
is deleted. Thus,

a base of both Ss
xk

and Ss
xk

is deleted. Therefore, by Definition 1, the
alignment is not canonical, a contradiction.

(2) Suppose that all the repeaters but one of S1 and two terminals of {S1
xi

, S1
xj

,

S1
xk
} are active. The active terminals can be in either (S1

xi
, S1

xj
), (S1

xi
, S1

xk
) or

(S1
xj

, S1
xk

). Since the cases where the active terminals are either in (S1
xi

, S1
xk

)
or (S1

xj
, S1

xk
) are fully similar, we detail hereafter only two cases: (a) the ac-

tive terminals are in (S1
xi

, S1
xj

) and (b) the active terminals are in (S1
xi

, S1
xk

).
(a) Suppose that the active terminals are in (S1

xi
, S1

xj
). By construction,

there is a repeater rep of S1
xi

such that (δ, rep[1]) ∈ P , (rep[2], θ) ∈ P
where δ (resp. θ) is a base C of Ss

xi
(resp. the first base of the terminal

in S1
xi

), as illustrated in Figure 5. Similarly, by construction, there is a
repeater rep′ of S1

xj
such that (δ′, rep′[1]) ∈ P , (rep′[2], θ′) ∈ P where δ′

(resp. θ′) is a base C of Ss
xj

(resp. the first base of the terminal in S1
xj

).
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Since, by hypothesis, the three terminals of {S1
xi

, S1
xj

, S1
xk
} are active,

then θ and θ′ are matched. Therefore, since both {θ, θ′} are matched,
rep[2] and rep′[2] are deleted. Since either rep or rep′ is active, either
rep[1] or rep′[1] is matched. Thus, either δ or δ′ is deleted.

Moreover, by construction, there is an arc between a base C of Ss
xi

(resp. Ss
xj

) and the first base of the terminal in S1
xi

(resp. S1
xj

). There-
fore, since two terminals of {S1

xi
, S1

xj
, S1

xk
} are active, at least one base

C of either Ss
xi

or Ss
xj

is deleted. Thus, a base of either both Ss
xi

and
Ss

xi
or both Ss

xj
and Ss

xj
is deleted. Consequently, by Definition 1, the

alignment is not canonical, a contradiction.
(b) Suppose now that the active terminals are in (S1

xi
, S1

xk
). By construction,

there is a repeater rep of S1
xi

such that (δ, rep[1]) ∈ P , (rep[2], θ) ∈ P
where δ (resp. θ) is a base C of Ss

xi
(resp. the first base of the terminal

in S1
xi

), as illustrated in Figure 5. Similarly, by construction, there is a
repeater rep′ of S1

xk
such that (δ′, rep′[1]) ∈ P , (rep′[2], θ′) ∈ P where δ′

(resp. θ′) is a base C of Ss
xk

(resp. the first base of the terminal in S1
xk

).
Since, by hypothesis, the three terminals of {S1

xi
, S1

xj
, S1

xk
} are active,

then θ and θ′ are matched. Therefore, since both {θ, θ′} are matched,
rep[2] and rep′[2] are deleted. Since either rep or rep′ is active, either
rep[1] or rep′[1] is matched. Thus, either δ or δ′ is deleted. Moreover,
by construction, there is an arc between a base C of Ss

xi
(resp. Ss

xk
) and

the first base of the terminal in S1
xi

(resp. S1
xk

). Therefore, since two
terminals of {S1

xi
, S1

xj
, S1

xk
} are active, at least one base C of either Ss

xi

or Ss
xk

is deleted. Thus, a base of either both Ss
xi

and Ss
xi

or both Ss
xk

and Ss
xk

is deleted. Consequently, by Definition 1, the alignment is not
canonical, a contradiction.

(3) Suppose that all the repeaters but two of S1 and three terminals of {S1
xi

,
S1

xj
, S1

xk
} are active. By construction, there is a repeater rep such that

(δ, rep[1]) ∈ P , (rep[2], θ) ∈ P where δ (resp. θ) is a base C of Ss
xi

(resp.
the first base of the terminal in S1

xi
). Similarly, by construction, there is a

repeater rep′ such that (δ′, rep′[1]) ∈ P , (rep′[2], θ′) ∈ P where δ′ (resp. θ′)
is a base C of Ss

xj
(resp. the first base of the terminal in S1

xj
). By construc-

tion, there is a repeater rep′′ such that (δ′′, rep′′[1]) ∈ P , (rep′′[2], θ′′) ∈ P
where δ′′ (resp. θ′′) is a base C of Ss

xk
(resp. the first base of the terminal in

S1
xk

). Since, by hypothesis, the three terminals of {S1
xi

, S1
xj

, S1
xk
} are active,

then θ, θ′ and θ′′ are matched. Therefore, since both {θ, θ′, θ′′} are matched,
rep[2], rep′[2] and rep′′[2] are deleted. Since either rep, rep′ or rep′′ is active,
either rep[1], rep′[1] or rep′′[1] is matched. Thus, either δ, δ′ or δ′′ is deleted.
Moreover, by construction, there is an arc between a base C of Ss

xi
(resp.

Ss
xj

and Ss
xk

) and the first base of the terminal in S1
xi

(resp. S1
xj

and S1
xk

).
Therefore, since three terminals of {S1

xi
, S1

xj
, S1

xk
} are active, at least one

base C of either Ss
xi

, Ss
xj

or Ss
xk

is deleted. Thus, a base of either both Ss
xi

and Ss
xi

or both Ss
xj

and Ss
xj

or both Ss
xk

and Ss
xk

is deleted. Therefore, by
Definition 1, the alignment is not canonical, a contradiction.



22 G. Blin et al.

Thus, the hypothesis that one repeater of S1 is inactive is wrong. Conse-
quently, only a terminal of S1 can be inactive. We deduce that all the repeaters
and two terminals of S1 are active. �

We now turn to proving that our construction is a polynomial time reduction
from 3-Sat to APS({<, �}, ∅).

Lemma 6. Let I be an instance of the problem 3-Sat with n variables and q
clauses, and I ′ an instance ((S, P ); (T, Q)) of APS({<, �}, ∅) obtained by an
APS2-cp-construction from I. An assignment of the variables that satisfies the
boolean formula of I exists iff (T, Q) is an Arc-Preserving Subsequence of (S, P ).

Proof. (⇒) Suppose we have an assignment AS of the n variables that satisfies
the boolean formula of I. By definition, for each clause there is at least one
literal that satisfies it. Let (S, P ) and (T, Q) be two sequences obtained from an
APS2-cp-construction from I. We look for a set of bases to delete from S in
order to obtain T . We define this set in three steps as follows.

(Step 1) For each variable xm ∈ AS, 1 ≤ m ≤ n:

– if xm = True then Se
xm

[2] and all the bases of Ss
xm

are deleted,
– if xm = False then Se

xm
[1] and all the bases of Ss

xm
are deleted.

Notice that the sequence obtained from Sα (resp. Sβ) by deleting the bases
described above is similar to Tα′ (resp. Tβ′), when not considering arcs.

(Step 2) We recall that, for any 1 ≤ m ≤ n and any 1 ≤ i ≤ q, γi
m (resp.

γi
m) denotes be the number of occurrences of literal xm (resp. xm) in the set of

clauses cj with i < j ≤ q and λi
m = γi

m + γi
m. For any 1 ≤ m ≤ n and for any

1 ≤ i ≤ q, we also recall that yi
m = 1 (resp. yi

m = 1) if xm ∈ ci (resp. xm ∈ ci),
yi

m = 0 (resp. yi
m = 0) otherwise. For each variable xm ∈ AS, 1 ≤ m ≤ n and

1 ≤ i ≤ q:

– if xm = True then the following bases are deleted:
• rep(i, m, j)[2] for all 1 ≤ j ≤ λi

m + yi
m,

• rep(i, m, j)[1] for all λi
m + yi

m < j ≤ 2λi
m + yi

m + yi
m,

• rep(i, m, j)[2] for all 1 ≤ j ≤ λi
m,

• rep(i, m, j)[1] for all λi
m < j ≤ 2λi

m

– if xm = False then the following bases are deleted:
• rep(i, m, j)[1] with 1 ≤ j ≤ λi

m + yi
m,

• rep(i, m, j)[2] with λi
m + yi

m < j ≤ 2λi
m + yi

m + yi
m,

• rep(i, m, j)[1] with 1 ≤ j ≤ λi
m,

• rep(i, m, j)[2] with λi
m < j ≤ 2λi

m

Let ji ∈ {1, 2, 3} denote the smallest position of the literal(s) satisfying ci.
For each 1 ≤ i ≤ q, all the bases of the jth

i terminal of Si are deleted.

Notice that, for all 1 ≤ m ≤ n and all 1 ≤ i ≤ q, a base G (resp. C) of
each repeater of Si

xm
(resp. Si

xm
) is deleted. The sequence obtained from Si by

deleting the bases described in Step 2 is a sequence of 2+2
∑n

m=1 λi
m substrings
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CA (since, by construction, Si is initially composed of 2
∑n

m=1 λi
m repeaters and

3 terminals).
By definition,

∑n
m=1 λi

m represents the number of literals in all the clauses
cj with i < j ≤ q. Since any clause is composed of three literals, we can deduce
that

∑n
m=1 λi

m = 3(q− i). Therefore, there are 2 + 2
∑n

m=1 λi
m (i.e. 2 + 6q− 6i)

terminals (i.e. CA) in T i. Consequently, the sequence obtained from Si by delet-
ing the bases described in Step 2 is similar to T i (when not considering arcs).

(Step 3) For each clause ci ∈ Cq with 1 ≤ i ≤ q, the following bases are
deleted:

– if exactly one literal (i.e. the jth
i ) satisfies ci then all the bases of the kth and

the lth terminals of Si with k �= l and k, l ∈ {1, 2, 3}\{ji}.
– if exactly two literals (say the jth

i and kth) satisfy ci then:
• all the bases of the lth terminal of Si with l �= k, l �= ji and l ∈ {1, 2, 3},
• all the bases of the repeater of Si connected to the bases of the kth

terminal of Si.
– if exactly three literals (i.e. the jth

i , kth and lth) satisfy ci then:
• all the bases of the repeater of Si connected to the bases of the kth

terminal of Si

• all the bases of the repeater of Si connected to the bases of the lth

terminal of Si.

The sequence obtained from Si by deleting the bases described in Step 2 is
composed of a sequence of 6+2

∑n
m=1 λi

m substrings GA (since, by construction,
Si is initially composed of 3+2

∑n
m=1 λi

m repeaters and 3 terminals). Moreover,
we know that

∑n
m=1 λi

m = 3(q − i). Therefore, there are 4 + 2
∑n

m=1 λi
m (i.e.

4+6q−6i) terminals (i.e. substrings GA) in T i. As in each of the above cases, all
the bases of two elements of Si have been deleted, the sequence obtained from
Si by deleting the bases described in Step 2 and Step 3 is similar to T i (when
not considering arcs).

Thus, the sequence obtained from S by deleting the bases described in Step 1,
Step 2 and Step 3 is similar to T (when not considering arcs). We now turn to
demonstrating that at least one base of any arc of P has been deleted. In the
following, we will distinguish arcs between bases A and U , denoted by AU -arcs,
from arcs between bases C and G, denoted by CG-arcs. Let us consider those
two types of arcs separately:

(1) By construction, for all 1 ≤ m ≤ n, the following AU -arcs have been created:
(Se

xm
[1],Ss

xm
[1]) and (Se

xm
[2],Ss

xm
[km + 1]).

By Step 1, since a variable xm has a unique value, either each base of Ss
xm

and Se
xm

[1], or each base of Ss
xm

and Se
xm

[2] is deleted for all 1 ≤ m ≤ n.
Thus, at least one base in S of any AU -arc of P is deleted.

(2) By construction, the following CG-arcs have been created:
– for all 1 ≤ m ≤ n, 1 ≤ j ≤ 2λi

m and 1 ≤ i < q:
• an arc between the second base G of rep(i, m, j) and the first base

C of the jth element (i.e. either a terminal or a repeater) of Si
xm

;
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• an arc between the second base C of rep(i, m, j) and the first base
G of the jth element of Si+1

xm
.

– for all 1 ≤ j ≤ γm + γm, an arc between the jth base C of substring
Ss

xm
ASs

xm
in Sβ and the first base G of the jth element of S1

xm
in Sζ .

In the following, we focus on the arcs of a clause ci and the arcs between
ci and ci+1, for any given 1 ≤ i < q (cf. Figure 6). More precisely, we will
demonstrate that, for any given 1 ≤ m ≤ n, at least one base of any arc in
{Si

m, Si
m, Si+1

m , Si+1
m } is deleted. This will prove that at least one base of any arc

connecting two bases of Sζ is deleted. In a second step, we will focus on the first
clause and prove that at least one base of any arc connecting a base of Sβ and
a base of S1 is deleted.

We recall that by construction:

Si
xm

= (GGA)λi
m+yi

m(GA)yi
m(GGA)λi

m+yi
m(GA)yi

m

Si
xm

= (CCA)λi
m (CA)yi

m(CCA)λi
m (CA)yi

m

Consider any variable xm with 1 ≤ m ≤ n. For any given 1 ≤ m ≤ n and
1 ≤ i ≤ q, we define the following four subsets of arcs:

– (Ai
m) for each 1 ≤ m ≤ n, the λi

m + yi
m first arcs between a base of Si

xm
and

a base of Si
xm

;
– (Bi

m) for each 1 ≤ m ≤ n, the rest of the arcs between a base of Si
xm

and a
base of Si

xm
;

– (Ci
m) for each 1 ≤ m ≤ n, the λi

m first arcs between a base of Si
xm

and a
base of Si+1

xm
;

– (Di
m) for each 1 ≤ m ≤ n, the rest of the arcs between a base of Si

xm
and a

base of Si+1
xm

.

Suppose first that xm = True. We now consider separately the nine following
cases:

– (a1) xm, xm �∈ {ci, ci+1};
– (a2) xm, xm �∈ ci and xm ∈ ci+1;
– (a3) xm, xm �∈ ci and xm ∈ ci+1;
– (b1) xm ∈ ci and xm, xm �∈ ci+1;
– (b2) xm ∈ ci and xm ∈ ci+1;
– (b3) xm ∈ ci and xm ∈ ci+1;
– (c1) xm ∈ ci and xm, xm �∈ ci+1;
– (c2) xm ∈ ci and xm ∈ ci+1;
– (c3) xm ∈ ci and xm ∈ ci+1.

(a1). Since xm, xm �∈ {ci, ci+1}, by definition, yi
m = yi

m = yi+1
m = yi+1

m = 0.
Moreover, as xm = True, for all 1 ≤ i ≤ q and all 1 ≤ j ≤ λi

m+yi
m, rep(i, m, j)[2]

is deleted. Thus, at least one base of any arc of the set (Ai
m) is deleted.

Since xm = True, rep(i, m, j)[1] is deleted for all 1 ≤ i ≤ q and all λi
m <

j ≤ 2λi
m (cf. Step 2). Therefore, at least one base of any arc of the set (Bi

m) is
deleted.
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Fig. 6. Sketch of the arc-structure of a clause ci, for any given 1 ≤ m ≤ n and

1 ≤ i < q. (a1) when xm, xm �∈ {ci, ci+1}. (a2) when xm, xm �∈ ci and xm ∈ ci+1. (a3)

when xm, xm �∈ ci and xm ∈ ci+1. (b1) when xm ∈ ci and xm, xm �∈ ci+1. (b2) when

xm ∈ ci and xm ∈ ci+1. (b3) when xm ∈ ci and xm ∈ ci+1. (c1) when xm ∈ ci and

xm, xm �∈ ci+1. (c2) when xm ∈ ci and xm ∈ ci+1. (c3) when xm ∈ ci and xm ∈ ci+1.
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Moreover, as xm = True, for all 1 ≤ i ≤ q and all 1 ≤ j ≤ λi
m, rep(i, m, j)[2]

is deleted (cf. Step 2). Consequently, at least one base of any arc of the set (Ci
m)

is deleted.
Finally, xm = True implies that rep(i+1, m, j)[1] is deleted for all 1 ≤ i < q

and all λi+1
m + yi+1

m < j ≤ 2λi+1
m + yi+1

m + yi+1
m . Therefore, at least one base of

any arc of the set (Di
m) is deleted.

(a2). The proof is fully similar to the one of (a1).

(a3). Since xm, xm �∈ ci and xm ∈ ci+1, by definition, yi
m = yi

m = yi+1
m = 0

and yi+1
m = 1. Moreover, as xm = True, for all 1 ≤ i ≤ q and all 1 ≤ j ≤ λi

m+yi
m,

rep(i, m, j)[2] is deleted. Thus, at least one base of any arc of the set (Ai
m) is

deleted.
Since xm = True, rep(i, m, j)[1] is deleted for all 1 ≤ i ≤ q and all λi

m <
j ≤ 2λi

m (cf. Step 2). Therefore, at least one base of any arc of the set (Bi
m) is

deleted.
Moreover, as xm = True, for all 1 ≤ i ≤ q and all 1 ≤ j ≤ λi

m, rep(i, m, j)[2]
is deleted (cf. Step 2). Consequently, at least one base of any arc of the set (Ci

m)
is deleted.

Finally, xm = True implies that rep(i+1, m, j)[1] is deleted for all 1 ≤ i < q
and all λi+1

m + yi+1
m < j ≤ 2λi+1

m + yi+1
m + yi+1

m . Moreover, by construction, if
yi+1

m = 1 then there is an arc connecting the base rep(i, m, j)[2] to a base of
the jth element (which is a terminal) of Si+1

xm
where j = 2λi

m. By definition, as
xm ∈ ci+1, xm does not satisfies ci+1 (since xm = True). By definition, there
exists at least a literal which, by it assignment, satisfies ci+1. Therefore, all the
bases of the terminal of Si+1

xm
have been deleted (cf. Step 3). Therefore, at least

one base of any arc of the set (Di
m) is deleted.

(b1). Since xm ∈ ci and xm, xm �∈ ci+1, by definition, yi
m = 1 and yi

m = yi+1
m =

yi+1
m = 0. Moreover, as xm = True, for all 1 ≤ i ≤ q and all 1 ≤ j ≤ λi

m + yi
m,

rep(i, m, j)[2] is deleted. Thus, at least one base of any arc of the set (Ai
m) is

deleted.
Since xm = True, rep(i, m, j)[1] is deleted for all 1 ≤ i ≤ q and all λi

m <
j ≤ 2λi

m (cf. Step 2). Moreover, by construction, if yi
m = 1 then there is an

arc connecting the base rep(i, m, j)[2] to a base of the jth element (which is
a terminal) of Si

xm
where j = 2λi

m + yi
m + yi

m. By definition, since yi
m = 1,

xm ∈ ci and thus xm satisfies ci. If xm is the literal with the smallest position
of the literal(s) satisfying ci, then all the bases of the terminal of Si

xm
have been

deleted. Otherwise, all the bases of the repeater of Si
xm

connected to the bases
of the terminal of Si

xm
are deleted (cf. Step 3). Therefore, at least one base of

any arc of the set (Bi
m) is deleted.

Moreover, as xm = True, for all 1 ≤ i ≤ q and all 1 ≤ j ≤ λi
m, rep(i, m, j)[2]

is deleted (cf. Step 2). Consequently, at least one base of any arc of the set (Ci
m)

is deleted.
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Finally, xm = True implies that rep(i+1, m, j)[1] is deleted for all 1 ≤ i < q
and all λi+1

m + yi+1
m < j ≤ 2λi+1

m + yi+1
m + yi+1

m . Therefore, at least one base of
any arc of the set (Di

m) is deleted.

(b2). The proof is fully similar to the one of (b1).

(b3). Since xm ∈ ci and xm ∈ ci+1, by definition, yi
m = yi+1

m = 1 and yi+1
m =

yi
m = 0. Moreover, as xm = True, for all 1 ≤ i ≤ q and all 1 ≤ j ≤ λi

m + yi
m,

rep(i, m, j)[2] is deleted. Thus, at least one base of any arc of the set (Ai
m) is

deleted.
Since xm = True, rep(i, m, j)[1] is deleted for all 1 ≤ i ≤ q and all λi

m <
j ≤ 2λi

m (cf. Step 2). Moreover, by construction, if yi
m = 1 then there is an

arc connecting the base rep(i, m, j)[2] to a base of the jth element (which is
a terminal) of Si

xm
where j = 2λi

m + yi
m + yi

m. By definition, since yi
m = 1,

xm ∈ ci and thus xm satisfies ci. If xm is the literal with the smallest position
of the literal(s) satisfying ci then all the bases of the terminal of Si

xm
have been

deleted. Otherwise, all the bases of the repeater of Si
xm

connected to the bases
of the terminal of Si

xm
are deleted (cf. Step 3). Therefore, at least a base of any

arc of the set (Bi
m) is deleted.

Moreover, as xm = True, for all 1 ≤ i ≤ q and all 1 ≤ j ≤ λi
m, rep(i, m, j)[2]

is deleted (cf. Step 2). Consequently, at least one base of any arc of the set (Ci
m)

is deleted.
Finally, xm = True implies that rep(i+1, m, j)[1] is deleted for all 1 ≤ i < q

and all λi+1
m + yi+1

m < j ≤ 2λi+1
m + yi+1

m + yi+1
m . Moreover, by construction, if

yi+1
m = 1 then there is an arc connecting the base rep(i, m, j)[2] to a base of

the jth element (which is a terminal) of Si+1
xm

where j = 2λi
m. By definition, as

xm ∈ ci+1, xm does not satisfies ci+1 (since xm = True). By definition, there
exists at least a literal which, by it assignment, satisfies ci+1. Therefore, all the
bases of the terminal of Si+1

xm
have been deleted (cf. Step 3). Therefore, at least

one base of any arc of the set (Di
m) is deleted.

(c1). Since xm ∈ ci and xm, xm �∈ ci+1, by definition, yi
m = 1 and yi

m = yi+1
m =

yi+1
m = 0. Moreover, as xm = True, for all 1 ≤ i ≤ q and all 1 ≤ j ≤ λi

m + yi
m,

rep(i, m, j)[2] is deleted. Thus, at least one base of any arc of the set (Ai
m) is

deleted.
Since xm = True, rep(i, m, j)[1] is deleted for all 1 ≤ i ≤ q and all λi

m < j ≤
2λi

m (cf. Step 2). Therefore, at least a base of any arc of the set (Bi
m) is deleted.

Moreover, as xm = True, for all 1 ≤ i ≤ q and all 1 ≤ j ≤ λi
m, rep(i, m, j)[2]

is deleted (cf. Step 2). Consequently, at least one base of any arc of the set (Ci
m)

is deleted.
Finally, xm = True implies that rep(i+1, m, j)[1] is deleted for all 1 ≤ i < q

and all λi+1
m + yi+1

m < j ≤ 2λi+1
m + yi+1

m + yi+1
m . Moreover, by construction, if

yi+1
m = 1 then there is an arc connecting the base rep(i, m, j)[2] to a base of

the jth element (which is a terminal) of Si+1
xm

where j = 2λi
m. By definition, as

xm ∈ ci+1, xm does not satisfies ci+1 (since xm = True). By definition, there
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exists at least a literal which, by it assignment, satisfies ci+1. Therefore, all the
bases of the terminal of Si+1

xm
have been deleted (cf. Step 3). Therefore, at least

one base of any arc of the set (Di
m) is deleted.

(c2). The proof is fully similar to the one of (c1).

(c3). The proof is fully similar to the one of (a1).

Therefore, when xm = True, at least one base of any CG-arc has been
deleted. If xm = False then a similar reasoning leads to the same conclusion,
i.e. at least one base of any CG-arc has been deleted. Thus, for any 1 < i ≤ q,
any CG-arc between a base of an element of the representation of the clause ci−1

(i.e. Si−1 U Si−1) and a base of an element of the representation of the clause
ci (i.e. Si U Si) has been deleted.

Moreover, for any 1 ≤ i ≤ q, any CG-arc between two bases of the repre-
sentation of the clause ci has been deleted. Remains us to consider the special
case of the first clause (i.e. c1). Indeed, there is, for all 1 ≤ j ≤ γm + γm, an arc
between the jth base C of substring Ss

xm
ASs

xm
in Sβ and the first base G of the

jth element of S1
xm

in Sζ .
For each 1 ≤ m ≤ n, if xm = True then each base of Ss

xm
and Se

xm
[2] is

deleted and rep(1, m, j)[2] is deleted with 1 ≤ j ≤ λi
m + yi

m. Moreover, for each
1 ≤ m ≤ n, if xm = False then each base of Ss

xm
and Se

xm
[1] is deleted and

rep(1, m, j)[1] is deleted with 1 ≤ j ≤ λi
m + yi

m. Thus, at least one base in S of
any CG-arc of P is deleted.

We just proved that if S′ is the sequence obtained from S by deleting all
the bases described in Step 1, Step 2 and Step 3 together with their incident
arcs, then there is no arc in S′ (i.e. neither AU -arcs or CG-arcs). Moreover, we
demonstrated previously that the sequence S′ is similar to T . Therefore, if an
assignment of the variables that satisfies the boolean formula of I exists, then
(T, Q) is an Arc-Preserving Subsequence of (S, P ).

(⇐) Let I be an instance of the problem 3-Sat with n variables and q
clauses. Let I ′ be an instance ((S, P ); (T, Q)) of APS({<, �}, ∅) obtained by an
APS2-cp-construction from I such that (T, Q) can be obtained from (S, P ) by
deleting some of its bases together with their incident arcs, if any. By Lemma 3,
any corresponding alignment of (S, P ) and (T, Q) is canonical. Therefore, T s

xm

is matched with either Ss
xm

A or A Ss
xm

. Consequently, for any 1 ≤ m ≤ n, we
define an assignment AS of the variables of I as follows:

– if T s
xm

is matched with Ss
xm

A then xm = False,
– otherwise, xm = True.

Now, let us prove that for any 1 ≤ i ≤ q the clause ci is satisfied by AS. Let
us first focus on the first clause (i.e. c1). c1 is defined by three literals (say xi, xj

and xk). Since, c1 is equal to the disjunction of variables built with xi, xj and
xk, c1 can have eight different forms, because each literal can appear in either
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its positive (xi) or negative (xi) form. In the following, we suppose, to illustrate
the proof, that c1 = (xi∨xj ∨xk) as illustrated in Figure 5, since the other cases
can be treated similarly.

By Lemmas 4 and 5, the two following properties must be satisfied:

– all the repeaters and two terminals of S1 are active,
– and either:

• all the repeaters and one terminal of S1 are active,
• all the repeaters but one and two terminals of S1 are active,
• all the repeaters but two and three terminals of S1 are active.

(1) Suppose that all the repeaters of S1 and one terminal of {S1
xi

, S1
xj

, S1
xk
}

are active. The active terminal can be in either S1
xi

, S1
xj

or S1
xk

. Since the cases
where the active terminal is either in S1

xi
or S1

xj
are fully similar, we detail

hereafter only two cases: (a) the active terminal is in S1
xi

and (b) the active
terminal is in S1

xk
.

(a) Suppose that the active terminal is in S1
xi

. By construction, there is an
arc between a base C of Ss

xi
and the first base of the terminal in S1

xi
. Thus, a

base C of Ss
xi

is deleted. Therefore, by the way we defined AS, xi = True and
thus c1 is satisfied.

(b) Suppose that the active terminal is in S1
xk

. By construction, there is an
arc between a base C of Ss

xk
and the first base of the terminal in S1

xk
. Thus, a

base C of Ss
xk

is deleted. Therefore, by the way we defined AS, xk = False and
thus c1 is satisfied.

(2) Suppose that all the repeaters but one of S1 and two terminals of {S1
xi

,
S1

xj
, S1

xk
} are active. The active terminals can be in either (S1

xi
, S1

xj
), (S1

xi
, S1

xk
)

or (S1
xj

, S1
xk

). Since the cases where the active terminals are either in (S1
xi

, S1
xk

)
or (S1

xj
, S1

xk
) are fully similar, we detail hereafter only two cases: (a) the active

terminals are in (S1
xi

, S1
xj

) and (b) the active terminals are in (S1
xi

, S1
xk

).
(a) Suppose that the active terminals are in (S1

xi
, S1

xj
). By construction, there

is an arc between a base C of Ss
xi

and the first base of the terminal in S1
xi

. Thus,
a base C of Ss

xi
is deleted. Moreover, by construction, there is an arc between a

base C of Ss
xj

and the first base of the terminal in S1
xj

. Thus, a base C of Ss
xj

is deleted. Therefore, by the way we defined AS, xi = xj = True and thus c1 is
satisfied.

For the sake of the proof, we now detail the alignment of the elements of c1

in case (a). Since all the repeaters and two terminals of S1 are active, at least
a terminal of either S1

xi
or S1

xj
is active. By construction, there is a repeater

rep of S1
xi

such that (δ, rep[1]) ∈ P and (rep[2], θ) ∈ P , where δ (resp. θ) is
a base C of Ss

xi
(resp. the first base of the terminal in S1

xi
), as illustrated in

Figure 5. Moreover, by construction, there is a repeater rep′ of S1
xj

such that
(δ′, rep′[1]) ∈ P and (rep′[2], θ′) ∈ P , where δ′ (resp. θ′) is a base C of Ss

xj

(resp. the first base of the terminal in S1
xj

), as illustrated in Figure 5. Since at
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least a terminal of either S1
xi

or S1
xj

is active, then either θ or θ′ is matched.
By definition, as Q = ∅, at least one base incident to every arc of P has to be
deleted. Therefore, either rep[2] or rep′[2] is deleted. Since either rep or rep′ is an
active repeater, either rep[1] or rep′[1] is matched. Thus, either δ or δ′ is deleted.
Since the alignment is canonical, for all 1 ≤ m ≤ n, a base of both Ss

xm
and Ss

xm

cannot be deleted. Therefore, the only two solutions are: either the terminal of
S1

xi
and rep′ are inactive, or the terminal of S1

xj
and rep are inactive.

(b) Suppose that the active terminals are in (S1
xi

, S1
xk

). By construction,
there is an arc between a base C of Ss

xi
and the first base of the terminal in

S1
xi

. Thus, a base C of Ss
xi

is deleted. Moreover, by construction, there is an arc
between a base C of Ss

xk
and the first base of the terminal in S1

xk
. Thus, a base C

of Ss
xk

is deleted. Therefore, by the way we defined AS, xi = True, xk = False
and thus c1 is satisfied.

For the sake of the proof, we now detail the alignment of the elements of c1

in case (b). Since all the repeaters and two terminals of S1 are active, at least
a terminal of either S1

xi
or S1

xk
is active. By construction, there is a repeater

rep of S1
xi

such that (δ, rep[1]) ∈ P and (rep[2], θ) ∈ P , where δ (resp. θ) is
a base C of Ss

xi
(resp. the first base of the terminal in S1

xi
), as illustrated in

Figure 5. Moreover, by construction, there is a repeater rep′ of S1
xk

such that
(δ′, rep′[1]) ∈ P and (rep′[2], θ′) ∈ P , where δ′ (resp. θ′) is a base C of Ss

xk

(resp. the first base of the terminal in S1
xk

), as illustrated in Figure 5. Since at
least a terminal of either S1

xi
or S1

xk
is active, then either θ or θ′ is matched.

By definition, as Q = ∅, at least one base incident to every arc of P has to be
deleted. Therefore, either rep[2] or rep′[2] is deleted. Since either rep or rep′

is an active repeater, either rep[1] or rep′[1] is matched. Thus, either δ or δ′

is deleted. Since the alignment is canonical, for all 1 ≤ m ≤ n, a base of both
Ss

xm
and Ss

xm
cannot be deleted. Therefore, the only two solutions are: either the

terminal of S1
xi

and rep′ are inactive, or the terminal of S1
xk

and rep are inactive.

(3) Suppose that all the repeaters but two of S1 and three terminals of
{S1

xi
, S1

xj
, S1

xk
} are active. By construction, there is an arc between a base C of

Ss
xi

and the first base of the terminal in S1
xi

. Thus, a base C of Ss
xi

is deleted.
Moreover, there is an arc between a base C of Ss

xj
and the first base of the

terminal in S1
xj

. Thus, a base C of Ss
xj

is deleted. Finally, by construction, there
is an arc between a base C of Ss

xk
and the first base of the terminal in S1

xk
. Thus,

a base C of Ss
xk

is deleted. Therefore, by the way we defined AS, xi = xj = True,
xk = False and thus c1 is satisfied.

For the sake of the proof, we now detail the alignment of the elements of c1 in
case (3). Since all the repeaters and two terminals of S1 are active, at least two
terminals of S1

xi
, S1

xj
, S1

xk
are active. By construction, there is a repeater rep of

S1
xi

such that (δ, rep[1]) ∈ P and (rep[2], θ) ∈ P , where δ (resp. θ) is a base C of
Ss

xi
(resp. the first base of the terminal in S1

xi
), as illustrated in Figure 5. More-

over, by construction, there is a repeater rep′ of S1
xj

such that (δ′, rep′[1]) ∈ P
and (rep′[2], θ′) ∈ P , where δ′ (resp. θ′) is a base C of Ss

xj
(resp. the first base
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of the terminal in S1
xj

), as illustrated in Figure 5. Finally, by construction, there
is a repeater rep′′ of S1

xk
such that (δ′′, rep′′[1]) ∈ P and (rep′′[2], θ′′) ∈ P ,

where δ′′ (resp. θ′′) is a base C of Ss
xk

(resp. the first base of the terminal in
S1

xk
), as illustrated in Figure 5. Since at least two terminals of S1

xi
, S1

xj
, S1

xk
are

active, then at least two of (θ, θ′, θ′′) are matched. By definition, as Q = ∅, at
least one base incident to every arc of P has to be deleted. Therefore, two of
(rep[2], rep′[2], rep′′[2]) are deleted. Since rep, rep′ or rep′′ is an active repeater,
either rep[1], rep′[1] or rep′′[1] is matched. Thus, either δ, δ′ or δ′′ is deleted.
Since the alignment is canonical, for all 1 ≤ m ≤ n a base of both Ss

xm
and Ss

xm

cannot be deleted. Therefore, the only three solutions are: either the terminal of
S1

xi
and rep′ and rep′′ are inactive, or the terminal of S1

xj
and rep and rep′′ are

inactive, or the terminal of S1
xk

and rep and rep′ are inactive.

We just proved that if I ′ is a solution then the truth assignment we defined
above satisfies clause c1. Moreover, we proved that any inactive repeater of S1 is
linked to a terminal of S1 (i.e. its second base is connected to a base of a terminal
of S1). Let rep be a repeater in S such that rep[1] and rep[2] are respectively
connected to bases u and v. The particular design of the repeaters ensues that
if rep is active then the situation is equivalent to the one where u and v are
connected with an arc. Indeed, if (S, P ) is an arc-preserving subsequence of (T, Q)
and rep is active, then exactly one out of {rep[1], rep[2]} is matched. Therefore,
if v is matched then rep[2] is deleted and rep[1] is matched. Consequently, u is
deleted. Similarly, if u is matched then v is deleted. More generally we can prove
the following claim (illustrated in Figure 7):

Claim. Let u and v be two bases and {rep1, rep2 . . . repk} be a set of repeaters
such that (u, rep1[1]) ∈ P , (repk[2], v) ∈ P and (repi[2], repi+1[1]) ∈ P for all
1 ≤ i < k.

Let A be an alignment. If for each 1 ≤ i ≤ k, repi is active in A, then:

– if u is matched then v is deleted;
– if v is matched then u is deleted.

Therefore, since all the repeaters of S1 are active and the inactive repeaters
of S1 are linked to terminals of S1, by the above claim, considering clause c2

is equivalent to considering c1. Therefore, c2 is satisfied and all the repeaters
of S2 are active and the inactive repeaters of S2 are linked to terminals of S2.
Consequently, a similar reasoning can be done recursively for any clause ci with
1 ≤ i ≤ q. Thus, we just proved that if I ′ is a solution then the truth assignment
we defined above satisfies all the clauses. �	

Fig. 7. Illustration of Claim 4
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5 Two Polynomial Time Solvable APS Problems

We prove in this section that APS({�},∅) and APS({�},{�}) are polynomial
time solvable. In other words, the relation � alone does not imply NP-
completeness.

We need the following notations. Sequences are the concatenation of zero or
more elements from an alphabet. We use the period “.” as the concatenation
operator, but frequently the two operands are simply put side by side. Let S =

(a)

(b)

Reverse

Reverse

S A G A C G G T A C G C A T GTTTGC C C

S[FBS : n]

z

S[1 : LFS ]

G

S[LFS +1 : FBS −1]

LFS FBS

LFT FBT

A G TC A G G T G T AT

y

T [FBT : m]

x

T [LFT +1 : FBT −1]

T [1 : LFT ]

vu w

S′
A G A C G G T A C G C TC C G T T A G T G C

S[1 : LFS ] S[FBS : n]R

S[LFS +1 : FBS −1]

A G TC A GT ′
A T G T G

x y

(y · T [FB : m])R

T [FBT : m]T [1 : LFT ]

Fig. 8. Illustration of Lemma 7
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S[1] S[2] . . . S[m] be a sequence of length m. For all 1 ≤ i ≤ j ≤ m, we write
S[i : j] to denote S[i] S[i + 1] . . . S[j]. The reverse of S is the sequence SR =
S[m] . . . S[2] S[1]. A factorization of S is any decomposition S = x1 x2 . . . xq

where x1, x2, . . . xq are (possibly empty) sequences. Let (S, P ) be a {�}-arc-
annotated sequence and (i, j) ∈ P , i < j, be an arc. We call S[i] a forward base
and S[j] a backward base. We will denote by LFS the position of the last forward
base in (S, P ) and by FBS the position of the first backward base in (S, P ), i.e.,
LFS = max{i : (i, j) ∈ P} and FBS = min{j : (i, j) ∈ P}. By convention, we let
LFS = 0 and FBS = |S|+ 1 if P = ∅. Observe that LFS < FBS .

We begin by proving a factorization result on {�}-arc-annotated sequences.
Lemma 7. Let S and T be two {�}-arc-annotated sequences of length n and
m, respectively. If T occurs as an arc preserving subsequence in S, then there
exists a possibly trivial factorization T [LFT +1 : FBT −1] = xy such that T [1 :
LFT ] · x · (y · T [FBT : m])R occurs as an arc preserving subsequence in S[1 :
FBS −1] · S[FBS : n]R.

Proof. Suppose that T occurs as an arc preserving subsequence in S. Since both
S and T are {�}-arc-annotated sequences, then there exist two factorizations
S[1 : LFS ] = uw and S[FBS : n] = zv such that: (i) T [1 : LFT ] occurs in u,
(ii) T [LFT +1 : FBT −1] occurs in w · S[LFS +1 : FBS −1] · z and (iii) T [FBT :
m] occurs in v. Then it follows that there exists a factorization T [LFT +1 :
FBT −1] = xy such that x occurs in w · S[LFS +1 : FBS −1] and y occurs in z,
and hence T ′ = T [1 : LFT ] · x · (y · T [FBT : m])R occurs as an arc preserving
subsequence in S′ = S[1 : FBS −1] · S[FBS : n]R (see Figure 8). �	
Theorem 3. The APS({�},{�}) problem is solvable in O(nm2) time.

Proof. The algorithm we propose is Algorithm 1.

Algorithm 1: An O(nm2) time algorithm solving the APS({�},{�}) problem
Data : Two {�}-arc-annotated sequences S and T of length n and m, respec-

tively

Result : true iff T occurs as an arc-preserving subsequence in S

begin

1 S′ = S[1 : FBS −1] · S[FBS : n]R

2 foreach factorization T [LFT +1 : FBT −1]| = xy do

3 T ′ = T [1 : LFT ] · x · (y · T [FBT : m])R

4 if T ′ occurs as an arc preserving subsequence in S′ then

5 return true

6 return false
end

Correctness of the algorithm follows from Lemma 7. What is left is to prove
the time complexity. Clearly, S′ = S[1 : FBS −1] · S[FBS : n]R is a {�}-
arc-annotated sequence. The key point is to note that, for any factorization
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T [LFT +1 : FBT −1] = xy, the obtained T ′ = T [1 : LFT ] · x · (y · T [FBT : m])R

is a {�}-arc-annotated sequence as well. Now let k be the number of arcs in T .
So there are at most m − 2k iterations to go before eventually returning false.
According to the above, Line 4 constitutes an instance of APS({�},{�}). But
APS({�},{�}) is a special case of APS({<, �},{<, �}), and hence is solv-
able in O(nm) time [11]. Then it follows that the algorithm as a whole runs in
O(nm(m− 2k)) = O(nm2) time. �	

Clearly, proof of Theorem 3 relies on an efficient algorithm for solving APS
({�},{�}): the better the complexity for APS({�},{�}), the better the com-
plexity for APS({�},{�}). We have used only the fact that APS({�},{�}) is a
special case of APS({<, �},{<, �}). It remains open, however, wether a better
complexity can be achieved for APS({�},{�}).

Theorem 3 carries out easily to restricted versions (Observation 1).

Corollary 1. APS({�},∅) is solvable in O(nm2) time.

6 Conclusion

In this paper, we investigated the APS problem time complexity and gave a
precise characterization of what makes the APS problem hard. We proved that
APS(Crossing,Plain) is NP-complete thereby answering an open problem
posed in [11] (see Table 3). Note that this result answers the last open prob-
lem concerning APS computational complexity with respect to classical com-
plexity levels, i.e., Plain, Chain, Nested and Crossing. Also, we refined
the four above mentioned levels for exploring the border between polynomial
time solvable and NP-complete problems. We proved that both APS({�, �}, ∅)
and APS({<, �}, ∅) are NP-complete and gave positive results by showing that
APS({�}, ∅) and APS({�},{�}) are polynomial time solvable. Hence, the re-
finement we suggest shows that APS problem becomes hard when one considers
sequences containing {�, α}-comparable arcs with α �= ∅. Therefore, crossing
arcs alone do not imply APS hardness. It is of course a challenging problem to

Table 3. Complexity results after refinement of the complexity levels. �: results from

this paper.

APS

����R1

R2 {<, �, �} {�, �} {<, �} {�} {<, �} {�} {<} ∅

{<, �, �} NP-C [6] NP-C � NP-C [12] NP-C � NP-C [12] NP-C � NP-C [12] NP-C �

{�, �} NP-C � //// NP-C � //// NP-C � //// NP-C �

{<, �} NP-C � NP-C � //// //// NP-C � NP-C �

{�} O(nm2) � //// //// //// O(nm2) �

{<, �} O(nm) [11] O(nm) [11] O(nm) [11] O(nm) [11]
{�} O(nm) [11] //// O(nm) [11]

{<} O(nm) [11] O(n + m) [11]

∅ O(n + m) [11]



What Makes the Arc-Preserving Subsequence Problem Hard? 35

further explore the complexity of the APS problem, and especially the parame-
terized views, by considering additional parameters such as the cutwidth or the
depth of the arc structures.
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Abstract. We developed a new method that can profile and efficiently search
for pseudoknot structures in noncoding RNA genes. It profiles interleaving stems
in pseudoknot structures with independent Covariance Model (CM) components.
The statistical alignment score for searching is obtained by combining the align-
ment scores from all CM components. Our experiments show that the model can
achieve excellent accuracy on both random and biological data. The efficiency
achieved by the method makes it possible to search for structures that contain
pseudoknot in genomes of a variety of organisms.

1 Introduction

Searching genomes with computational models has become an effective approach for
the identification of genes. During recent years, extensive research has been focused on
developing computationally efficient and accurate models that can find novel noncoding
RNAs and reveal their associated biological functions. Unlike the messenger RNAs
that encode the amino acid residues of protein molecules, noncoding RNA molecules
play direct roles in a variety of biological processes including gene regulation, RNA
processing, and modification. For example, the human 7SK RNA binds and inhibits
the transcription elongation factor P-TEFb [17][25] and the RNase P RNA processes
the 5’ end of precursor tRNAs and some rRNAs [7]. Noncoding RNAs include more
than 100 different families [23]. Genome annotation based on models constructed from
homologous sequence families could be a reliable and effective approach to enlarging
the known families of noncoding RNAs.

The functions of noncoding RNAs are, to a large extent, determined by the sec-
ondary structures they fold into. Secondary structures are formed by bonded base pairs
between nucleotides and may remain unchanged while the nucleotide sequence may
have been significantly modified through mutations over the course of evolution. Pro-
filing models based solely on sequence content such as Hidden Markov Model (HMM)
[12] may miss structural homologies when directly used to search genomes for noncod-
ing RNAs containing complex secondary structures. Models that can profile noncoding
RNAs must include both the content and the structural information from the homolo-
gous sequences. The Covariance Model (CM) developed by Eddy and Durbin [6] ex-
tends the profiling HMM by allowing the coemission of paired nucleotides on certain
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states to model base pairs, and introduces bifurcation states to emit parallel stems. The
CM is capable of modeling secondary structures comprised of nested and parallel stems.
However, pseudoknot structures, where at least two structurally interleaving stems are
involved, cannot be directly modeled with the CM and have remained computationally
intractable for searching [1][13][14][18][19][20][21][24].

So far, only a few systems have been developed for profiling and searching for RNA
pseudoknots. One example is ERPIN developed by Gautheret and Lambert [8][15].
ERPIN searches genomes by sequentially looking for single stem loop motifs contained
in the noncoding RNA gene, and reports a hit when significant alignment scores are
observed for all the motifs at their corresponding locations. Since ERPIN does not allow
the presence of gaps when it performs alignments, it is computationally very efficient.
However, alignments with no gaps may miss distant homologies and thus result in a
lower sensitivity.

Brown and Wilson [2] proposed a more realistic model comprised of a number of
Stochastic Context Free Grammar (SCFG) [3][22] components to profile pseudoknot
structures. In their model, the interleaving stems in a pseudoknot structure are derived
from different components; the pseudoknot structure is modeled as the intersection of
components. The optimal alignment score of a sequence segment is computed by align-
ing it to all the components iteratively. The model can be used to search sequences for
simple pseudoknot structures efficiently. However, a generic framework for modeling
interleaving stems and carrying out the search was not proposed in their work. For pseu-
doknots with more complex structure, more than two SCFG components may be needed
and the extension of the iterative alignment algorithm to k components may require k!
different alignments in total since all components are treated equally in their model.

In this paper, we propose a new method to search for RNA pseudoknot structures
using a model of multiple CMs. Unlike the model of Brown and Wilson, we use inde-
pendent CM components to profile the interleaving stems in a pseudoknot. Based on
the model, we have developed a generic framework for modeling interleaving stems
of pseudoknot structures; we propose an algorithm that can efficiently assign stems to
components such that interleaving stems are profiled in different components. The com-
ponents with more stems are associated with higher weights in determining the overall
conformation of a sequence segment. In order to efficiently perform alignments of the
sequence segment to the model, instead of iteratively aligning the sequence segment
to the CM components, our searching algorithm aligns it to each component indepen-
dently following the descending order of component weights. The statistical log-odds
scores are computed based on the structural alignment scores of each CM component.
Stem contention may occur such that two or more base pairs obtained from different
components require the participation of the same nucleotide. Due to the conforma-
tional constraints inherently imposed by the CM components, stem contentions occur
infrequently (less than 30%) and can be effectively resolved based on the conforma-
tional constraints from the alignment results on components with higher weight values.
The algorithm is able to accomplish the search with a worst case time complexity of
O((k − 1)W 3L) and a space complexity of O(kW 2), where k is the number of CM
components in the model, W and L are the size of the searching window and the length
of the genome respectively.
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We used the model to search for a variety of RNA pseudoknots inserted in ran-
domly generated sequences. Experiments show that the model can achieve excellent
sensitivity (SE) and specificity (SP) on almost all of them, while using only slightly
more computation time than searching for pseudoknot-free RNA structures. We then
applied the model and the searching algorithm to identify the pseudoknots on the 3’
untranslated region in several RNA genomes from the corona virus family. An exact
match between the locations found by our program and the real locations is observed.
Finally, in order to test the ability of our program to cope with noncoding RNA genes
with complex pseudoknot structures, we carried out an experiment where the complete
DNA genomes of two bacteria were searched to find the locations of the tmRNA genes.
The results show that our program identified the location with a reasonable amount of
error (with a right shift of around 20 nucleotide bases) for one bacterial genome and
for the other bacteria search was perfect. To the best of our knowledge, this is the first
experiment where a whole genome of more than a million nucleotides is searched for a
complex structure that contains pseudoknots.

2 Experiments and Results

To test the performance of the model, we developed a search program in C language
and carried out searching experiments on a Sun/Solaris workstation. The workstation
has 8 dual processors and 32GB main memory. We evaluated the accuracy of the pro-
gram on both real genomes and randomly generated sequences with a number of RNA
pseudoknot structures inserted. The RNAs we choose to test the model are shown in
Table 1. Model training and testing are based on the multiple alignments downloaded
from the Rfam database [10]. For each RNA pseudoknot, we divided the available
data into a training set and a testing set, and the parameters used to model it are es-
timated based on multiple structural alignments among 5 − 90 homologous training
sequences with a pairwise identity less than 80%. The emission probabilities of all
nucleotides for a given state in a CM component are estimated by computing their
frequencies to appear in the corresponding column in the multiple alignment of train-
ing sequences; transition probabilities are computed similarly by considering the rel-

Table 1. Information on training sequences used for the estimation of model parameters

RNA Number of training sequences Number of nucleotides Pseudocount
tmRNA−pk12 36 130 − 250 1.5
tmRNA−pk34 89 90 − 120 2.4

srpRNA 24 30 − 50 1.2
telomerase−vert 13 90 − 200 0.9

corona−pk3 14 60 − 70 0.9
HDV−ribozyme 15 90 − 100 1.0
tombus−3−IV 17 90 − 100 1.0

alpha−RBS 9 100 − 120 0.8
antizyme−FSE 13 50 − 60 0.9
IFN−gamma 5 160 − 180 0.6
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Table 2. The performance of the model on different RNA pseudoknots inserted into a back-
ground (of 105 nucleotides) randomly generated with different C+G concentrations. TN is the
total number of pseudoknotted sequence segments inserted; CI is the number of sequence seg-
ments correctly identified by the program (with a positional error less than ±3 bases); NH is the
number of sequence segments returned by the program; SE and SP are sensitivity and specificity
respectively. The thresholds of log-odds score are predetermined using the Z-score value of 4.0.

RNA TN CI NH SE(%) SP(%) Running time(hr) Background C+G (%)
tmRNA−pk12 25 20 24 80.0 83.3 56.33 57.0
tmRNA−pk34 27 26 31 96.0 84.0 59.36 57.0

srpRNA 29 13 16 44.8 81.3 4.79 57.0
telomerase−vert 14 14 15 100.0 93.3 68.83 57.0

corona−pk3 37 37 39 100.0 94.8 2.89 57.0
HDV−ribozyme 37 37 37 100.0 100.0 6.54 57.0
tombus−3−IV 13 13 13 100.0 100.0 15.45 57.0

alpha−RBS 24 24 25 100.0 96.0 27.85 57.0
antizyme−FSE 28 28 28 100.0 100.0 0.94 57.0
IFN−gamma 10 10 10 100.0 100.0 31.24 57.0

tmRNA−pk12 24 24 25 100.0 96.0 55.57 67.0
tmRNA−pk34 27 27 30 100.0 90.0 56.42 67.0

srpRNA 25 17 19 68.0 89.4 4.76 67.0
telomerase−vert 13 13 14 100.0 92.9 67.80 67.0

corona−pk3 33 33 34 100.0 97.1 2.90 67.0
HDV−ribozyme 37 37 37 100.0 100.0 6.52 67.0
tombus−3−IV 20 20 20 100.0 100.0 16.63 67.0

alpha−RBS 18 18 18 100.0 100.0 27.79 67.0
antizyme−FSE 28 28 29 100.0 96.6 0.94 67.0
IFN−gamma 10 10 10 100.0 100.0 33.15 67.0

tmRNA−pk12 26 26 29 100.0 90.0 55.45 77.0
tmRNA−pk34 25 25 33 100.0 75.7 53.55 77.0

srpRNA 29 22 23 75.9 95.7 4.78 77.0
telomerase−vert 16 16 16 100.0 100.0 66.07 77.0

corona−pk3 37 37 37 100.0 100.0 3.13 77.0
HDV−ribozyme 37 37 37 100.0 100.0 6.57 77.0
tombus−3−IV 20 20 20 100.0 100.0 16.94 77.0

alpha−RBS 22 22 22 100.0 100.0 28.86 77.0
antizyme−FSE 28 28 28 100.0 100.0 0.96 77.0
IFN−gamma 10 10 10 100.0 100.0 32.55 77.0

tmRNA−pk12 24 24 25 100.0 96.2 55.09 87.0
tmRNA−pk34 27 27 28 100.0 96.4 52.39 87.0

srpRNA 26 25 25 96.2 100.0 4.81 87.0
telomerase−vert 17 17 17 100.0 100.0 70.60 87.0

corona−pk3 37 37 37 100.0 100.0 3.17 87.0
HDV−ribozyme 37 37 37 100.0 100.0 6.64 87.0
tombus−3−IV 20 20 20 100.0 100.0 16.94 87.0

alpha−RBS 24 23 23 95.8 100.0 29.08 87.0
antizyme−FSE 26 26 26 100.0 100.0 0.94 87.0
IFN−gamma 10 10 10 100.0 100.0 32.84 87.0
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ative frequencies for different types of transitions that occur between the correspond-
ing consecutive columns in the alignment. Pseudocounts, dependent on the number
of training sequences, are included to prevent overfitting of the model to the training
data.

To measure the sensitivity and specificity of the searching program within a rea-
sonable amount of time, for each selected pseudoknot structure, we selected 10 − 40
sequence segments from the set of testing data and inserted them into each of the ran-
domly generated sequences of 105 nucleotides. In order to test whether the model is
sensitive to the base composition of the background sequence, we varied the C+G con-
centration in the random background. The program computes the log-odds, the loga-
rithmic ratio of the probability of generating sequence segment s by the null (random)
model R to that by our model M . It reports a hit when the Z-score of s is greater than
4.0. The computation of Z-scores requires knowing the mean and standard deviation for
the distribution of log-odd scores of random sequence segments; both of them can be
determined with methods similar to the ones introduced by Klein and Eddy [11] before
the search starts.

As can be seen in Table 2, the program correctly identifies more than 80% of in-
serted sequence segments with excellent specificity in most of the experiments. The
only exception is the srpRNA, where the program misses more than 50% inserted se-
quence segments in one of the experiments. The relatively lower sensitivity in that par-
ticular experiment can be partly ascribed to the fact that the pseudoknot structure of
srpRNA contains fewer nucleotides; thus its structural and sequence patterns have a
larger probability to occur randomly. The running time for srpRNA, however, is also
significantly shorter than that needed by most of other RNA pseudoknots due to the
smaller size of the model. Additionally, while the alpha−RBS pseudoknot has a more
complex structure and three CM components are needed to model it, our searching
algorithm efficiently identifies more than 95% of the inserted pseudoknots with high
specificities. A higher C+G concentration in the background does not adversely affect
the specificity of the model; it is evident from Table 2 that the program achieves better
overall performance in both sensitivity and specificity in a background of higher C+G
concentrations. We therefore conjecture that the specificity of the model is partly deter-
mined by the base composition of the genome and is improved if the base composition
of the target gene is considerably different from its background.

To test the accuracy of the program on real genomes, we performed experiments
to search for particular pseudoknot structures in the genomes for a variety of organ-
isms. Table 3 shows the genomes on which we have searched with our program and the
locations annotated for the corresponding pseudoknot structures. The program success-
fully identified the exact locations of known 3’UTR pseudoknot in four genomes from
the family of corona virus. This pseudoknot was recently shown to be essential for the
replication of the viruses in the family [9].

In addition, the genomes of the bacteria, Haemophilus influenzae and Neisseria
meningitidis MC58, were searched for their tmRNA genes. The Haemophilus influenzae
DNA genome contains about 1.8 × 106 nucleotides and Neisseria meningitidis MC58
DNA genome contains about 2.2× 106 nucleotides. The tmRNA functions in the trans-
translation process to add a C-terminal peptide tag to the incomplete protein product of
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Table 3. The results obtained with our searching program on the genomes of a variety of organ-
isms. GA is the accession number of the genome; RL specifies the real location of the pseudoknot
structure in the genome; SL is the one returned by the program; RT is the running time needed
to perform the searching in hours; GL is the length of the genome in its number of bases. The
genome of Haemophilus searched in our experiment is the reversed complementary DNA strand.

GA Organism ncRNA RL SL RT(hr) GL(bs)
NC000907 Haemophilus tmRNA 472210 − 472575 472177 − 472542 170.00 1.83 × 106

NC003112 Neisseria tmRNA 1241197− 1241197− 170.00 2.2 × 106

meningitidis 1241559 1241559

NC003045 Bovine 3’UTR 30798 − 30859 30798 − 30859 1.24 31028
CoronaVirus pk

NC002645 Human 3’UTR 27063 − 27125 27063 − 27125 1.12 27317
CoronaVirus pk

NC001846 Murine 3’UTR 31092 − 31153 31092 − 31153 1.27 31357
HepatitusVirus pk

NC003436 Porcine 3’UTR 27820 − 27882 27820 − 27882 1.17 28033
DiarrheaVirus pk

-A-B-D-E-F-G-H-g-h-I-J-j-i-K-L-M-N-m-O-o-l-k-n-P-p-Q-R-S-r-q-s-T-U-V-W-X-v-u-t-Z-!-z-1-@-#-2-3-x-w-f-e-d-b-$-4-a-

PK1 PK2 PK3 PK4

Fig. 1. Diagram of the pairing regions on the tmRNA gene. Upper case letters indicate base se-
quences that pair with the corresponding lower case letters. The four pseudoknots constitute the
central part of the tmRNA gene and are called Pk1, Pk2, Pk3, Pk4 respectively.

a defective mRNA [16]. The central part of the secondary structure of tmRNA molecule
consists of four pseudoknot structures. Figure 1 shows the pseudoknot structures on the
tmRNA molecule.

In order to search the bacterial DNA genomes efficiently, the combined pseudo-
knots 1 and 2 were used to search the genome first; the program searches for the whole
tmRNA gene only in the region around the locations where a hit for Pk1 and Pk2 is
detected. We cut the genome into segments with shorter lengths (around 105 nucleotide
bases for each), and ran the program in parallel on ten of them in two rounds. The re-
sult for Neisseria meningitidis MC58 shows that we successfully identified the exact
locations of tmRNA. However, the locations of tmRNA obtained for Haemophilus in-
fluenzae have a shift of around 20 nucleotides with respect to its real location (7% of
the length of the tmRNA). This slight error can probably be ascribed to our “hit-and-
extend” searching strategy to resolve the difficulty arising from the complex structure
and the relatively much larger size of tmRNA genes; positional errors may occur during
different searching stages and accumulate to a significant value. Our experiment on the
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DNA genomes also demonstrates that, for each genome, it is very likely there is only
one tmRNA gene in it, since our program found only one significant hit. To our knowl-
edge, this is the first computational experiment where a whole genome of more than
a million nucleotides was successfully searched for a complex structure that contains
pseudoknot structures.

3 Models and Algorithms

The Covariance Model (CM) proposed by Eddy and Durbin [6][5] can effectively model
the base pairs formed between nucleotides in an RNA molecule. Similarly to the emis-
sion probabilities in HMMs, the emission probabilities in the CM for both unpaired nu-
cleotides and base pairs are positional dependent. The profiling of a stem hence consists
of a chain of consecutive emissions of base pairs. Parallel stems on the RNA sequence
are modeled with bifurcation transitions where a bifurcation state is split into two states.
The parallel stems are then generated from the transitions starting with the two states
that result respectively.

The genome is scanned by a window with an appropriate length. Each location of
the window is scored by aligning all subsequence segments contained in the window to
the model with the CYK algorithm. The maximum log-odds score of them is determined
as the log-odds score associated with the location. A hit is reported for a location if the
computed log-odds score is higher than a predetermined threshold value.

Pseudoknot structures are beyond the profiling capability of a single CM due to the
inherent context sensitivity of pseudoknots. Models for pseudoknot structures require a
mechanism for the description of their interleaving stems. Previous work by Brown and
Wilson [2] and Cai et al. [4] has modeled the pseudoknot structures with grammar com-
ponents that intersect or cooperatively communicate. A similar idea is adopted in this
work; a number of independent CM components are combined to resolve the difficulty
in profiling that arises from the interleaving stems. Interleaving stems are profiled in
different CM components and the alignment score of a sequence segment is determined
based on a combination of the alignment scores on all components.

However, the optimal conformations from the alignments on different components
may violate some of the conformationalconstraints that a single RNA sequence must fol-
low. For example, a nucleotide rarely forms two different base pairs simultaneously with
other nucleotides in an RNA molecule. This type of restriction is not considered by the
independent alignments carried out in our model and thus may lead to erroneous search-
ing results if not treated properly. In our model, stem contention may occur. We break
the contention by introducing different priorities to components; base pairs determined
from components with the highest priority win the contention. We hypothesize that, bio-
chemically, components profiling more stems are likely to play more dominant roles in
the formation of the conformation and are hence assigned higher priority weights.

3.1 Model Generation

In order to profile the interleaving stems in a pseudoknot structure with independent CM
components, we need an algorithm that can partition the set of stems on the RNA se-
quence into a number of sets comprised of stems that mutually do not interleave. Based
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on the consensus structure of the RNA sequence, an undirected graph G = (V, E) can
be constructed where V , the set of vertices in G, consists of all stems on the sequence.
Two vertices are connected with an edge in G if the corresponding stems are in paral-
lel or nested. The set of vertices V needs to be partitioned into subsets such that the
subgraph induced by each subset forms a clique.

We use a greedy algorithm to perform the partition. Starting with a vertex set S
initialized to contain a arbitrarily selected vertex, the algorithm iteratively searches the
neighbors of the vertices in S and computes the set of vertices that are connected to
all vertices in S. It then randomly selects one vertex v that is not in S from the set
and modifies S by assigning v to S. The algorithm outputs S as one of the subsets in
the partition when S can not be enlarged and randomly selects an unassigned vertex
and repeats the same procedure. It stops when every vertex in G has been included
in a subset. Although the algorithm does not minimize the number of subsets in the
partition, our experiments show that it can efficiently provide optimal partitions of the
stems on pseudoknot structures of moderate structural complexity.

The CM components in the profiling model are generated and trained based on the
partition of the stems. The stems in the same subset are profiled in the same CM compo-
nent. For each component, the parameters are estimated by considering the consensus
structure formed by the stems in the subset only.

3.2 Searching Algorithm

The optimal alignments of a sequence segment to the CM components are computed
with the dynamic programming based CYK algorithm. As we have mentioned before,
higher priority weights are assigned to components with more stems profiled. The com-
ponent with the maximum number of stems thus has the maximum weight and is the
dominant component in the model. The algorithm performs alignments in the descend-
ing order of component weights. It selects the sequence segment that maximizes the
log-odds score from the dominant component. The alignment scores and optimal con-
formations of this segment on other components are then computed and combined to
obtain the overall log-odds score for the segment’s position on the genome.

More specifically, we assume that the model contains k CM components M0, M1,
..., Mk−1 in descending order of component weights. The algorithm considers all pos-
sible sequence segments sd that are enclosed in the window and uses Equation (1) to
determine the sequence segment s to be the candidate for further consideration, where
W is the length of the window used in searching, and Equation (2) to compute the over-
all log-odds score for s. We use smi to denote the parts of s that are aligned to the
stems profiled in CM component Mi. Basically, Log odds(smi|Mi) accounts for the
contributions from the alignment of smi to Mi. The log-odds score of smi is counted
in both M0 and Mi and must be subtracted from the sum.

s = arg max
0<|sd|<W

{Log odds(sd|M0)}. (1)

Log odds(s|M) = Log odds(s|M0)

+
k−1∑
i=1

∑
smi∈Mi

(Log odds(smi|Mi)− Log odds(smi|M0)). (2)
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3.3 Stem Contention

The conformations corresponding to the optimal alignments of a sequence segment to
all CM components are obtained by tracing back the dynamic programming matrices
and checking to ensure that no stem contention occurs. Since each nucleotide in the
sequence is represented with a state in a CM component, the CM inherently imposes
constraints on the optimal conformations of sequence segments aligned to it. We hence
expect that stem contention occurs with a low frequency. In order to verify this intuition,
we tested the model on sequences randomly generated with different base compositions
and evaluated the frequencies of stem contentions for pseudoknot structures on which
we have performed an accuracy test; the results are shown in Figure 2.

The presence of stem contention increases the running time of the algorithm, be-
cause the alignment of one of the involved components must be recomputed to resolve
the contention. Based on the assumption that components with more stems contribute
more to the stability of the optimal conformation, we resolve the contention in favor
of such components. We perform recomputation on the component with a lower num-
ber of stems by incorporating conformational constraints inherited from components
with more stems into the alignment algorithm, preventing them from forming the con-
tentious stems.

Specifically, we assume that stem Sj ∈Mi and stem contention occurs between Sj

and other stems profiled in Mi−1; the conformational constraints from the component
Mi−1 are in the format of (l1, l2) and (r1, r2). In other words, to avoid the stem con-
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Fig. 2. 4000 random sequences were generated at each given base composition and aligned to the
corresponding profiling model. The sequences are of about the same length as the length of the
pseudoknot structure. The stem contention rates for each pseudoknot structure were measured
and plotted. They were the ratio of the number of random sequences in which stem contentions
occurred to the number of total random sequences. Left: plots of profiling models observed to
have a stem contention rate lower than 20%, right: plots of these with slightly higher stem con-
tention frequencies. The experimental results demonstrate that, in all pseudoknots where we have
performed accuracy tests, stem contention occurs with a rate lower than 30% and is insensitive
to the base composition of sequences.
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tention, the left and right parts of the stem must be the subsequences of indices (l1, l2)
and (r1, r2) respectively. The dynamic programming matrices for Sj are limited to the
rectangular region that satisfies l1 ≤ s ≤ l2 and r1 ≤ t ≤ r2.

The stem contention frequency depends on the conformational flexibilities of the
components in the covariance model. More flexibilities in conformation may improve
the sensitivity of the model but cause higher contention frequency and thus increase the
running time for the algorithm. In the worst case, recomputation is needed for all non-
dominant components in the model and the time complexity of the algorithm becomes
O((k − 1)W 3L), where k is the number of components in the model, W and L are the
window length and the genome length respectively.

4 Conclusions and Future Work

In this paper, we have introduced a new model that serves as the basis for a generic
framework that can efficiently search genomes for the noncoding RNAs with pseudo-
knot structures. Within the framework, interleaving stems in pseudoknot structures are
modeled with independent CM components and alignment is performed by aligning
sequence segments to all components following the descending order of their weight
values. Stem contention occurs with a low frequency and can be resolved with a dy-
namic programming based recomputation. The statistical log-odds scores are computed
based on the alignment results from all components. Our experiments on both random
and biological data demonstrate that the searching framework achieves excellent per-
formance in both accuracy and efficiency and can be used to annotate genomes for
noncoding RNA genes with complex secondary structures in practice.

We were able to search a bacterial genome for a complete structure with a pseu-
doknot in about one week on our Sun workstation. It would be desirable to improve
our algorithm so that we could search larger genomes and databases. The running time,
however, could be significantly shortened if a filter can be designed to preprocess DNA
genomes and only the parts that pass the filtering process are aligned to the model. Al-
ternatively, it may be possible to devise alternative profiling methods to the covariance
model that would allow faster searches.
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Abstract. A class of new kernels has been developed for vectors derived
from a coding scheme of the k-peptide composition for protein sequences.
Each kernel defines the biological similarity for two mapped k-peptide
coding vectors. The mapping transforms a k-peptide coding vector into
a new vector based on a matrix formed by high BLOSUM scores asso-
ciated with pairs of k-peptides. In conjunction with the use of support
vector machines, the effectiveness of the new kernels is evaluated against
the conventional coding scheme of k-peptide (k ≤ 3) for the prediction
of subcellular localizations of proteins in Gram-negative bacteria. It is
demonstrated that the new method outperforms all the other methods
in a 5-fold cross-validation.

Keywords: Protein subcellular localization, BLOSUM matrix, kernel,
support vector machine, Gram-negative bacteria.

1 Introduction

Advances in genome sequencing and proteomics are generating enormous num-
bers of genes and proteins. Accordingly, the development of automated systems
for the annotation of protein structure and function has become extremely im-
portant. Since many cellular functions are compartmentalized in specific regions
of a cell, subcellular localization of a protein is biologically highlighted as a
key element in understanding its function. Specific knowledge of the subcellular
location can direct further experimental study of proteins.

Methods and systems have been developed during the last decade for the
predictive task of protein localization. Machine learning methods such as Ar-
tificial Neural Networks, the k-nearest neighbor method, and Support Vector
Machines (SVMs) have been utilized in conjunction with various methods of
feature extraction for protein sequences. Most of the early approaches employed
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the amino acid and di-peptide compositions [7,12,27,28] to represent sequences.
These methods may miss information on sequence order and inter-relationships
among amino acids. In order to overcome these shortcomings, it has been shown
that motifs, frequent-subsequences, functional domains, and other useful fea-
tures, which are obtained from various databases (SMART, InterPro, PROSITE)
or extracted using Hidden Markov Models, Fourier Transform, and other data
mining techniques, can be used for the representation of protein sequences for the
prediction of subcellular localizations [2,3,6,15,29,30]. Methods have also been
developed based on the use of the N-terminal sorting signals [1,5,10,21,24,25,26]
and sequence homology searching [23].

Most robust methods adopt an integrative approach by combining several
methods, each of which may be a suitable predictor for a specific localization or
a generic predictor for all localizations. PSORT is an example of such successful
system. Developed by Nakai and Kanehisa [25], PSORT, recently upgraded to
PSORT II [11,24], is an expert system that can distinguish between different
subcellular localizations in eukaryotic cells. It also has a dedicated subsystem
PSORT-B for bacterial sequences [8].

Several recent studies [19,31], however, have indicated that a predicting sys-
tem based on the use of a generalized k-peptide composition or sequence ho-
mology could obtain similar or better performance compared to that of the
integrated system PSORT-B. The outcome from our work supports these
findings.

In this study, a new similarity measurement for protein sequences has been
developed based on the use of high-scored pairs of k-peptides. It is the extension
of the concept used in our previous work [16] for a fixed k value (k = 3). More
specifically, each pair of k-peptides is assigned a score based on a BLOSUM
matrix. A small portion of pairs with high scores is selected to retain their
original scores in order to reduce noise and computational time. The remaining
pairs are given zero scores. The reassigned score associated with each pair of
k-peptides is then considered as an entry in a matrix Dk, which is named as the
matrix of high-scored pairs of k-peptides. When k = 1, this matrix is the same as
the BLOSUM matrix, except that the entries with negative values are replaced
by zeroes. When k ≥ 2, each entry is the BLOSUM score corresponding to a pair
of k-peptides with negative value being replaced by zero. Each protein sequence
is first coded by its k-peptide composition. Then each k-peptide coding vector
xk is mapped to another vector Dkxk, and the similarity between the sequences
is measured by those mapped vectors. That is, the kernel is defined based on
these mapped vectors.

The new kernels combined with SVMs are evaluated against the conven-
tional coding scheme of k-peptide (k ≤ 3) composition for the prediction of
subcellular localizations for proteins obtained from Gram-negative bacteria [8].
It is demonstrated by the result of a 5-fold cross-validation that the new kernel
method outperforms significantly the coding methods based on the conventional
k-peptide composition.
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2 Method

This section introduces a new kernel for the coding vectors derived from the
k-peptide compositions of protein sequences. This coding scheme based on the
k-peptide composition for k ≤ 2 has been used for the prediction of subcellular
localizations [12,27,31], but has never been directly evaluated for k = 3. Below
a short description of SVMs is presented.

2.1 Support Vector Machines

Suppose that a set of m training points xi (1 ≤ i ≤ m) in an n-dimensional
space is given. Each point xi is labeled by yi ∈ {1,−1} denoting the member-
ship of the point. An SVM is a learning method for binary classification. Using
a nonlinear transformation φ, it maps the data to a high dimensional feature
space in which a linear classification is performed. It is equivalent to solving the
quadratic optimization problem:

min
w,b,ξ1,...,ξm

1
2
w ·w + C

m∑
i=1

ξi

subject to yi(φ(xi) ·w + b) ≥ 1− ξi (i = 1, ..., m),
ξi ≥ 0 (i = 1, ..., m),

(1)

where C is a parameter. The decision function is defined as f(x) = sign(φ(x) ·
w + b), where w =

∑m
i=1 αiφ(xi) and αi (i = 1, ..., m) are constants determined

by the dual problem of the optimization defined above.
For any pair of mappings φ(xi) and φ(xj), the kernel function k(xi, xj) is

defined as a dot product of φ(xi) and φ(xj), i.e.,

k(xi, xj) = φ(xi) · φ(xj). (2)

The kernel function is essentially a measurement of similarity for the mapped
points in terms of their inner products. The matrix Kij = k(xi, xj) is called
the kernel matrix. The decision function can be represented by using the kernel
function:

f(x) = sign(
m∑

i=1

αiφ(xi) · φ(x) + b) = sign(
m∑

i=1

αik(xi, x) + b). (3)

Typical kernel functions are, for example, polynomial kernel (xi · xj + a)d

(d ≥ 1) and the radial basis kernel exp(−γ‖xi − xj‖2). In most of these cases,
the corresponding nonlinear mappings φ are not known explicitly, although their
existence is guaranteed. For other details of SVMs refer to [4].

2.2 Sequence Coding Schemes and a Class of New Kernels Based
on High-Scored Pairs of k-Peptides

The effectiveness of the coding schemes for protein sequences based on the k-
peptide compositions or their variations has been demonstrated in the prediction
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of subcellular localizations, combining with machine learning tools such as neural
networks and support vector machines [12,23,27,31]. If k = 1, the k-peptide
composition reduces to the amino acid composition, and if k = 2, the k-peptide
composition gives the di-peptide composition. When k becomes larger, the k-
peptide composition will encompass more global sequence information, but at the
same time, such a coding scheme becomes less attractive from the computational
viewpoint.

In order to code a sequence, a window with a length of k is moved along the
sequence from the first amino acid to the kth amino acid from the end. Every
k-letter pattern that appears in the window is recorded with an increment of
1 in the corresponding entry of the vector. The final vector is normalized by
dividing the number of window positions associated with that sequence. Upon
the termination of this procedure, the vector provides the k-peptide composition
of the sequence. Since the symbol “X” may appear in some sequences, it is added
to the set of the original 20 symbols of the amino acids to give a total of 21.
Therefore, vectors of 21, 212 = 441 and 213 = 9261 dimensions are required,
respectively, for k = 1, 2, and 3 in this coding scheme.

However, a more sensitive and biologically relevant coding method would
allow some degree of mismatch of amino acids in the k-peptide representation
for k �= 1. That is, the similarity should be large if two sequences share many
similar k-peptides. This idea has been explored by Leslie et al. [17] for protein
homology detection, and a set of mismatch kernels was developed. In their paper,
the coding vector represents the occurrence of the corresponding k-peptides and
its mismatched peptides in a protein sequence. In our work, the concept of
mismatch kernel is explored in an implicit and different way. The similarity of
two k-peptides is measured by the sum of BLOSUM scores between two residues
at the same position.

In order to define the new kernel, we introduce a matrix in which each entry
corresponds to the pairwise score of two k-peptides. For example, the scores are
12 for an AAA-AAA pair, 11 for an AAY-ACY pair, and 6 for a TVW-TVR
pair, if the BLOSUM62 matrix is used. Since the majority of all possible pairs
is associated with lower scores, the elimination of those pairs can reduce noise
that may confuse the prediction. In addition, this procedure also reduces training
time. Accordingly, only a very small portion of the entries corresponding to high-
scored pairs is kept given a proper threshold, and the other entries are replaced
by 0 in the matrix. The resulting matrix is called the matrix of high-scored pairs
of k-peptides, and is denoted as Dk. The new kernel k(·, ·) is then defined as

k(xi
k, xj

k) = exp(−γ‖Dkxi
k −Dkxj

k‖
2) (4)

for the radial basis functions; or

k(xi
k, xj

k) = (Dkxi
k ·Dkxj

k + a)d, d ≥ 1 (5)

for polynomial functions. Basically, the similarity is measured between the trans-
formed vectors Dkxi

k and Dkxj
k, instead of that between the original k-peptide

coding vectors xi
k and xi

k.
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The example in Fig. 1 describes the coding vectors obtained from the two
methods for two short amino acids sequences AAACY and AACCY: x1

3 and
x2

3 are based on the tri-peptide composition; and D3x
1
3 and D3x

2
3. For the

tri-peptide composition, the vectors x1
3 and x2

3 share one common tri-peptide
“AAC”, which is the entry 2 in the vectors. However, the transformed vectors
D3x

1
3 and D3x

2
3 have many non-zero common entries, such as 2, 16, 23, 24,

26, 28, etc (see boldfaced numbers in Fig.1). This implies that the transforma-
tion can capture similarity even if the two sequences do not share many exactly
matched tri-peptides.

2. Coding a sequence AAACY using the tri-peptide composition and BLOSUM62 matrix

ACY  0    0    0    0           11         0  
AAC  8    17   0    0           0          0 
AAA  12   8    0    0           0          0
    AAA  AAC  AAD  AAE  ...... AAY ...... YYY

The transformed coding vector of x  is 
1:6.67 2:8.33 6:2.67 16:3.00 17:2.67 18:2.67 21:3.67 22:6.33 
23:8.00 24:3.33 25:3.67 26:5.33 27:3.33 28:5.00 29:4.00 ...

The transformed coding vector of x  is
1:2.67 2:10.00 22:4.33 23:11.67 24:3.33 25:3.00 26:7.67 
27:3.33  28:7.00 29:6.67 30:3.33 31:6.67 32:6.67 33:3.33 ...

1. Tri-peptide encodings 
AAACY 
x  1:0.33  2:0.33  42:0.33
AACCY
x  2:0.33  23:0.33  483:0.33

6.67 8.33  0    0   ...... 3.67......  0

BLOSUM scores for 
pairs of tri-peptides 

2

3

3

1

1
3

2
3

Fig. 1. The coding vectors for sequences AAACY and AACCY based on the tri-peptide

composition and the transformed vectors based on high-scored pairs of tri-peptides.

The representation of coding vectors follows the sparse format of SVMLight [14], i.e.,

the numbers appearing in the format of vector index : score. The shared elements

between two sequences are boldfaced.

It is noted that the size of the matrix Dk for k = 3 is 9261 × 9261. How-
ever, after score thresholding, very few non-zero entries in the matrix are kept.
Therefore, the matrix is represented using a sparse data structure to ensure the
efficiency of computation. The selection of the high-scored pairs of k-peptides
is virtually filtering the k-peptides sharing more residues in common. In addi-
tion, the procedure also retains those pairs with high similarity BLOSUM scores
between the residues.

3 Experimental Results and Discussion

In order to evaluate the performance of our new kernels on the prediction of
protein subcellular localization for different values of k = 1, 2, 3, a set of pro-
teins from Gram-negative bacteria was used. In addition, the computation with
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the conventional k-peptide (k = 1, 2, 3) coding scheme was also performed for
comparison.

3.1 Dataset

The set of proteins from Gram-negative bacteria used in the evaluation of
PSORT-B [8] was considered (available at http://www.psort.org/) in this ex-
periment. It consists of 1443 proteins with experimentally determined localiza-
tions. The dataset comprises 1302 proteins resident at a single localization site:
248 cytoplasmic, 268 inner membrane, 244 periplasmic, 352 outer membrane,
and 190 extra cellular; it additionally contains a set of 141 proteins resident
at multiple localization sites: 14 cytoplasmic/inner membrane, 50 inner mem-
brane/periplasmic, and 77 outer membrane/extracellular. In our experiment, we
considered only the 1302 proteins possessing a single localization.

3.2 Experiments and Results

The BLOSUM62 matrix was used for the assignment of scores to pairs of k-
peptides. The threshold for high-scored pairs was 0 for k = 1, 2; and 8 for
k = 3. The nonzero entries account for about 1.3% of the entries in matrix D3.
In order to ease the computational burden, the 2000 top scored entries from
a transformed vector D3x3 were further selected to form the input vector for
SVMs. The threshold 8 and the number 2000 were determined empirically from
the preliminary study to ensure good performance and fast training.

The experiment was carried out with a 5-fold cross-validation (CV) for each
specific localization. Each time, the relevant dataset consisting of the proteins
with the specific localizations was designated as the positive set; and the re-
mainder of the proteins was denoted as the negative set. The radial basis (4)
and polynomial kernel (5) (degree ranged from 1 to 6) functions were used for
the SVMs. Since the polynomial kernels did not generate good results, we only
present the results obtained from the radial basis kernel.

As the sizes of the positive and negative sets are substantially different, the
performance of SVMs was evaluated for precision, defined as tp/(tp + fp); and
recall, defined as tp/(tp + fn), where tp, tn, fp, and fn are the numbers of pre-
dicted true positive, true negative, false positive and false negative, respectively.
In addition, the F-score combining the precision and recall:

F -score =
2 ∗ precision ∗ recall
precision + recall

, (6)

was also evaluated. The reported values of precision, recall, and F-score are the
averages from the 5-fold CVs.

The generalization performance of an SVM is controlled by the following
parameters:
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(1) C : the trade-off between the training error and the class separation;
(2) γ : the parameter in the radial basis function exp(−γ‖Dkxi

k −Dxj
k‖2);

(3) J : the biased penalty for errors from positive and negative training points.

The penalty term C
∑m

i=1 ξi in SVM is split into two terms [22]:

C

m∑
i=1

ξi ⇒ C
∑

{i:yi=1}
ξi + CJ

∑
{i:yi=−1}

ξi. (7)

The choices of the parameters in this experiment are given as follows:
for the new kernels,

C: from 1 to 40 with an incremental size of 3;
γ: from 0.001 to 1 with an incremental size of 0.003;
J : from 0.1 to 3.0 with an incremental size of 0.4;

and for the conventional k-peptides compositions,

C: from 1 to 150 with an incremental size of 10;
γ: from 1 to 100 with an incremental size of 10;
J : from 0.1 to 3.0 with an incremental size of 0.2.

The SVMLight package was used as the SVM solver [14]. The values of
precision and recall of a 5-fold CV were computed for each triplet (C, γ, J). The
best values of precision, recall and the corresponding F-score for each method
are reported. The symbols P, R and F used in Tables 1 and 2 stand respectively
for precision, recall, and F-score.

From Table 1, it can be seen that the performance is sensitive to the value
of k. With k = 2, the new kernel achieves the best performance in terms of
precision, recall, and F-score. Specifically, the recall (85.73) is about 10% higher
compared with that (75.76) obtained when k = 3, while maintaining a similar
level of precision; the precision (90.07) is about 8% higher than that (81.93)
obtained when k = 1; while keeping almost the same recall value.

The results of prediction with the conventional k-peptide composition scheme
for the same data set are reported in Table 2. It is readily seen from the table that
the three coding methods do not show significant difference in their performance,
although the coding with composition (k = 1) achieves a slightly better level

Table 1. Results obtained from the new kernel method with different matrices for the

proteins from Gram-negative bacteria

Method D1 D2 D3
Localization P R F P R F P R F
Cytoplasmic 76.74 87.05 81.46 88.12 84.53 86.24 77.38 73.48 75.38
Inner membrane 95.30 84.95 89.69 95.39 90.73 92.90 97.29 85.27 90.88
Periplasmic 76.43 79.69 77.88 80.44 82.55 81.36 85.98 68.45 76.22
Outer membrane 84.92 90.72 87.63 95.20 92.83 93.95 96.25 86.73 91.24
Extra cellular 76.26 83.73 79.73 91.22 78.00 83.85 92.11 64.86 76.12
Average 81.93 85.23 83.28 90.07 85.73 87.66 89.80 75.76 81.94
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Table 2. Results obtained from the conventional k-peptide coding method for the

proteins from Gram-negative bacteria

Method composition di-peptide tri-peptide
Localization P R F P R F P R F
Cytoplasmic 80.09 70.77 74.66 81.12 57.69 66.09 83.43 45.00 55.09
Inner membrane 98.52 82.27 89.54 98.15 81.51 88.80 99.52 80.75 89.01
Periplasmic 94.12 55.17 68.38 91.80 54.14 65.77 90.37 50.34 63.11
Outer membrane 87.86 84.23 85.74 90.12 79.76 84.00 93.15 83.29 87.79
Extra cellular 88.38 53.68 66.05 89.71 53.68 66.27 92.57 50.53 64.63
Average 89.79 69.23 76.87 90.18 65.36 74.18 93.17 64.80 74.62

of recall. In this comparison it is clear the new kernel method demonstrates
superior performance over the conventional k-peptide coding method. The recall
(85.73) produced by the new method with k = 2 shows substantial improvement
from 69.23 (composition), 65.36 (di-peptide), and 64.80 (tri-peptide); the F-score
is likewise improved to a level of 87.66, from 76.87 (composition), 74.18 (di-
peptide), and 74.62 (tri-peptide); while a similar level of precision is maintained.

The performance of the new kernel method also compares favorably with
SCL-BLAST [23], a BLAST-search based predictor for all localizations. The
new method improves recall from 60.40 to 85.73 and F-score from 74.36 to 87.66,
while having a lower precision (90.07) compared to that (96.70) of SCL-BLAST.

It is worth noting that the new method (k = 2) yields a similar overall
performance compared with the latest version of PSORT-B (v.2.0) [9], which
gives a precision of 95.88, a recall of 82.6 and an F-score of 88.7. As the PSORT-
B comprises several modules designed for the prediction of specific localization
sites, it is surprising that our single module can match the performance of this
integrative predictor.

4 Discussion

Kernel-based learning algorithms, such as SVMs, are among the most advanced
machine learning methods. The success largely depends on the choice of ker-
nel functions. In general, the more that prior knowledges is incorporated into
the kernel function, the better the performance of the SVMs. Several successful
approaches have focused on the design of new kernels reflecting higher levels of
biological knowledge. This includes the mismatch kernel for protein fold recogni-
tion [17], the Fisher kernel for the detection of remote protein homologies [13], a
class of edit kernels for the prediction of translation initiation sites in eukaryotic
mRNAs [18], and an oligo kernel for the prediction of prokaryotic translation
initiation sites [20]. The approach most relevant to our study is the mismatch
kernel. In that work, each protein sequence is coded by a vector with each entry
representing the number of occurrences of a k-peptide including its mismatched
partners, namely, those that have a limited number of mutated amino acids in
reference to the original k-peptide. Then, a linear kernel is essentially a weighted
sum of numbers of shared mismatched k-peptides between two sequences. The
class of new kernels proposed in this study can be considered as a generalization
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of the mismatch kernel. The similarity between two k-peptides is measured not
only by the number of mismatched residues, but also by the evolution distances
between the residues based on their BLOSUM scores. This is concluded that
these features are the basis of the improved performance of the new kernels that
is revealed in the comparison with the conventional k-peptide coding scheme.

Although the class of the new kernels proposed in this study is general for
any k-peptides, the implementation presents a particular difficulty when k > 3.
This is why the experiments in this work were performed with k ≤ 3. A clever
data structure, such as the one used in [17], is needed for fast computation. This
issue is currently under investigation.

5 Conclusions

This work has introduced a class of novel kernels based on matrices formed
by the BLOSUM scores assigned to pairs of k-peptides of protein sequences.
Through a linear mapping defined by the matrix, this method generalized the
conventional k-peptide coding method to allow the measurement of similarity be-
tween mismatched k-peptides based on BLOSUM scores. The kernels have been
used in support vector machines for the prediction of subcellular localizations.
The performance of the new kernels was evaluated on a set of proteins with ex-
perimentally determined localizations from Gram-negative bacteria. Compared
with other coding systems using k-peptide compositions, the experimental re-
sults demonstrate that the new kernel exhibited superior overall performance for
the predictions. The method also achieved a similar level of overall performance
comparing with that of the integrated system PSORT-B.
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Abstract. By using a mixture model for the density distribution of
the three pseudobond angles formed by Cα atoms of four consecutive
residues, the local structural states are discretized as 17 conformational
letters of a protein structural alphabet. This coarse-graining procedure
converts a 3D structure to a 1D code sequence. A substitution matrix
between these letters is constructed based on the structural alignments
of the FSSP database. 1

1 Introduction

Drastic approximations are unavoidable in prediction of protein structure from
the amino acid sequence. Generally, the procedure to deduce finite discrete con-
formational states from a continuous conformational phase space is a clustering
analysis. There have been a variety of different ways of clustering. For example,
Park and Levitt (1995) represent the polypeptide chain by a sequence of rigid
fragments that are chosen from a library of representative fragments, and con-
catenated without any degrees of freedom. The average deviation of the global-fit
approximations over a training set is taken as the objective function for optimiz-
ing the finite representative fragments. The state clusters there are representative
points of the phase space. Rooman, Kocher and Wodak (1991) intuitively divide
the φ-ψ space into 6 regions, which corresponds to a partitioning based on the
Ramachandran plot. Standard methods for clustering analysis have been also
used to generate discrete structure states (Bystroff and Baker, 1998).

Hidden Markov models (HMMs; Rabiner, 1989), possessing a rigorous but
flexible mathematical structure, have been used in a variety of computational
biology problems such as sequence motif recognition (Fujiwara et al., 1994), gene
finding (Burge and Karlin, 1997), protein secondary structure prediction (Asai,
Hazamizu and Handa, 1993; Zheng, 2004), and multiple sequence alignments
(Krogh et al., 1994). The HMMs have been also used for identifying the modular
framwork for the protein backbone (Edgoose, Allison and Dowe, 1998; Camproux
et al., 1999). In these HMMs conformation states are represented by probability
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distributions, which is much finer than a simple partition of the phase space.
HMMs involve in a large number of parameters, and it is not so convenient
to assign structure codes to a short segment with HMMs. Here we develop a
description of protein backbone tertiary structure using psuedobond angles of
successive Cα atoms. Finite conformational states as structural alphabet are
selected according to the density peaks of probability distribution in the phase
space spanned by pseudobond angles. We derive a substitution matrix of these
states from a representative pairwise aligned structure set of the FSSP (families
of structurally similar proteins) database of Holm and Sander (1994).

2 Methods

Pseudobond Angles. Among a variety of abstract representing forms for pro-
tein 3D structure, a frequently encountered one is the protein virtual backbone
forming by Cα atoms. The virtual bond bending angle θ defined for three con-
tiguous points (a, b, c) is the angle between the vectors rab = rb − ra and rbc,
i.e. θ = rab · rbc/(|rabrbc|). The range of θ is [0, 2π]. The virtual bond torsion
angle τ defined for four contiguous points (a, b, c, d) is the dihedral angle between
the planes abc and bcd. The range of τ is (−π, π], and its sign is the same as
(rab × rbc) · rcd. In fact, we may adopt a wider range of τ under the equivalence
relation that τ1 and τ2 are equivalent if τ1 = τ2 (mod 2π). For the four-residue
segment abcd, by takeing a as the origin, and b on the x-axis, and c on the xy-
plane, the number of independent relative coordinates are 6. The assumption of
the fixed pseudobond length, which is 3.8 Å for the dominating trans peptide,
further reduces the number of degrees of freedom to 3. These independent co-
ordinates correspond to the angles (θabc, τabcd, θbcd). Elongating the segment by
one residue e will add two more angles τbcde and θcde. Generally, for a sequence
of n residues, we have n− 2 bending angles and n− 3 torsion angles, 2n− 5 in
total. We shall assign the angles (θabc, τabcd, θbcd) ≡ (θb, τc, θc) to residue c, the
third of the four-residue segment.

By convention, for the chain {r0, r1, · · · , rn} with angles {θ1; τ2, θ2; · · · ; τn−1,
θn−1}, we set the origin at r0, put r1 along the x-axis, and add τ1 = 0. Intro-
ducing the identity matrix I, the rotation matrices Rθ and Rτ

Rθ =

⎛
⎝ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠ , Rτ =

⎛
⎝1 0 0

0 cos τ − sin τ
0 sin τ cos τ

⎞
⎠ , and d = r1 =

⎛
⎝1

0
0

⎞
⎠ , (1)

position rk is determined by

T0 = I, r0 = 0·d, Tk = Tk−1Rτk
Rθk

, dk = Tk−1 ·d, rk = rk−1+dk, k ≥ 1. (2)

Longer fragments will include more correlation than shorter fragments. How-
ever, the complexity that can be explored with the longer fragment lengths is
limited severely by the relatively small number of known protein structures, and
a larger number of discrete states have to be determined for a longer segment.
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The minimal unit where the relative coordinates fix the angles and vice versa is
four contiguous residue segment. We shall concentrate mainly on the structure
codes for the four residue unit.

The Mixture Model for the Angle Probability Distribution. The three
pseudobond angles (θ, τ, θ′) of the four-residue unit span the three-dimensional
phase space. Our classifiers for conformational states are based on the following
mixture model M : The probability distribution of ‘points’ x ≡ (θ, τ, θ′) is given
by the mixture of several normal distributions

P (x|M) =
c∑

i=1

πiN(μi,Σi), (3)

where c is the number of the normal distribution categories in the mixture, πi

the prior for category i, and N(μ,Σ) the normal distribution. These categories
will be translated as the structure codes.

To objectively determine the number c of categories, we investigate density
peaks in the phase space with the downhill simplex method of Nelder and Mead
(1965). We use counts in a rectangular box as the value of the function for
optimization at the center of the box. We examine also density peaks in the five-
dimensional phase space spanned by (θb, τc, θc, τd, θd) of the five-residue unit
abcde. It is demanded that all the important three-angle modes implied by the
main density peaks in the five-angle phase space must be included in the modes
used for the construction of the mixture model.

The main purpose of searching for density peaks is to estimate the number c
of categories and {μi} for each category. Once this has been done, we may start
with some simple {πi} and {Σi}, say πi = 1/c and certain diagonal {Σi}, and
then update the mixture model by the Expectation-Maximization (EM) method.
For each point xk = (θk−1, τk, θk), we calculate the probability for the point to
belong to the i-th category Ci according to the Bayes formula as

P (Ci|xk) ∝ πiP (xk|Ci) ∝ πi|Σi|−1/2 exp[ 12 (xk − μi) ·Σ−1
i · (xk − μk)], (4)

where we always shift τk to the interval [τ (i)− π, τ (i) + π) centered at τ (i) of the
τ -component of the mean μi. Generally, the objective function for optimizing
the mixture model is

Prob({xk}) =
∏
k

∑
i

P (xk, Ci) ∝
∏
k

∑
i

P (Ci|xk). (5)

However, when we convert point xk to its structural code i∗, we use

i∗ = argi maxP (Ci|xk). (6)

An alternative objective function would be Q({xk}) =
∏

k maxi P (Ci|xk). When
starting with narrow distributions for Σi, a very high value of Q could be seen
at the first step. However, by just one step of the EM iteration Q will drop
significantly, and then increases at later steps. While Prob({xk}) never decreases,
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Q will decrease after reaching its maximum. We may stop the model training
before Q decreases again. Thus, the optimization here is a compromise between
Prob({xk}) and Q({xk}). Once we have the model, we may convert a structure
to its conformational code sequence according to (6).

3 Result

For establishing the discrete structural states by training the mixture model, we
create a nonredundant set of 1544 non-membrane proteins from PDB SELECT
with amino acid identity less than 25% issued on 25 September of 2001. The data
of the three-dimensional structures for these proteins are taken from Protein
Data Bank (PDB). The total number of contiguous fragments is 2248, which
gives totally 264,232 points in the three-angle phase space.

The Discrete Structural States. The marginal one-dimensional distribution
of the pseudobond bending angle has two prominent peaks around θ = 1.10
and 1.55 (radians). Non-zero θs are in the interval [.4, 1.9]. The marginal one-
dimensional distribution of the torsion angle τ has one immediately noticeable
peak at τ = 0.87 (corresponding to the helix). Another peak at τ = −2.94 is
less prominent. There is a vague peak still recognizable around τ = −2.00. A
grid generated with θ ∈ {1.00, 1.55} and τ ∈ {−2.80,−2.05,−1.00, 0.00, 0.87} is
used to search high dimensional phase space for density peaks by the downhill
simplex method. In the box counting, the box size is taken from 0.1 to 0.2 for θ,
and the width for τ is twice of that for θ. Further exploring main peaks in the

Table 1. The 17 structural states from the mixture model

π |Σ|−1/2 μ Σ−1

State θ τ θ′ θθ τθ ττ θ′θ θ′τ θ′θ′

I 8.2 1881 1.52 0.83 1.52 275.4 −28.3 84.3 106.9 −46.1 214.4
J 7.3 1797 1.58 1.05 1.55 314.3 −10.3 46.0 37.8 −70.0 332.8
H 16.2 10425 1.55 0.88 1.55 706.6 −93.9 245.5 128.9 −171.8 786.1
K 5.9 254 1.48 0.70 1.43 73.8 −13.7 21.5 15.5 −25.3 75.7
F 4.9 105 1.09 −2.72 0.91 24.1 1.9 10.9 −11.2 −8.8 53.0
E 11.6 109 1.02 −2.98 0.95 34.3 4.2 15.2 −9.3 −22.5 56.8
C 7.5 100 1.01 −1.88 1.14 28.0 4.1 6.2 2.3 −5.1 69.4
D 5.4 78 0.79 −2.30 1.03 56.2 3.8 4.2 −10.8 −2.1 30.1
A 4.3 203 1.02 −2.00 1.55 30.5 9.1 8.7 6.0 5.7 228.6
B 3.9 66 1.06 −2.94 1.34 26.9 4.6 4.9 9.5 −5.0 54.3
G 5.6 133 1.49 2.09 1.05 163.9 0.6 3.8 2.0 −3.7 32.3
L 5.3 40 1.40 0.75 0.84 43.7 2.5 1.4 −7.0 −2.9 34.5
M 3.7 144 1.47 1.64 1.44 72.9 2.1 4.8 1.9 −7.9 72.9
N 3.1 74 1.12 0.14 1.49 25.3 3.2 3.1 9.9 0.9 83.0
O 2.1 247 1.54 −1.89 1.48 170.8 −0.7 3.7 −4.1 3.1 98.7
P 3.2 206 1.24 −2.98 1.49 48.0 8.2 7.3 −4.9 −6.6 155.6
Q 1.7 25 0.86 −0.37 1.01 28.4 1.5 1.2 3.4 0.1 19.5
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five-angle phase space, we identify 17 mode centers, which are then used as the
main initial parameters to train the mixture model. Finally, the 17 structural
states are obtained for the mixture model by the EM algorithm. They are listed
in Table 1.

The total number of possible four-residue secondary structures is 37 due
to the restriction of the minimal lengths 2 for e and 3 for h. It is seen that
there exists a correlation between the 17 structural states and the secondary
structures. For example, hhhh are mainly attributed to H , I and J , while eeee
to E and D. The mutual information between the conformational codes and the
secondary structure states equals 0.731. Conformation cccc has rather uniform
percentages in different structural states as we would expect.

Structural Substitution Matrix. Amino acid substitution matrices, extracted
from our knowledge of most and least common changes in a large number of pro-
teins, serve for the purpose of sequence alignment. The popular BLOSUM matrix
of Henikoff and Henikoff (1992) is derived from a large set of conserved amino
acid patterns without gaps representing various families. The frequency of amino
acid substitutions in alignments is counted in sequence alignments. These fre-
quencies are then divided by the expected frequency of finding the amino acids
together in an alignment by chance. The ratio of the observed to the expected
counts is an odds score. The BLOSUM entries are logarithms of the odds scores
with the base 2 and multiplied by a scaling factor of 2.

To use our structural codes directly for the structural comparison, a score
matrix similar to BLOSUM is desired. There is a database of aligned structures,
the FSSP of Holm and Sander (1997), which is based on exhaustive all-against-
all 3D structure comparison of protein structures in the PDB. The proteins

Table 2. CLESUM: The conformation letter substitution

J 38
H 15 25
I 12 14 51
K 16 8 17 51
N −1 −32 −16 28 89
Q −43 −87 −69 −24 31 88
L −31 −61 −48 0 5 24 71
G -21 −49 −40 −11 −7 8 27 68
M 17 −2 −4 14 8 −7 4 21 59
B −55 −94 −79 −49 −11 10 −13 12 −14 49
P −33 −58 −55 −35 −4 6 −14 3 7 41 64
A −22 −43 −39 −17 10 13 −12 −7 −2 19 34 71
O −23 −54 −37 5 14 −13 −5 −2 5 −12 2 23 102
C −42 −75 −59 −32 −5 27 −2 −6 −12 5 4 12 1 51
E −91 −125 −112 −83 −43 −8 −23 −24 −47 13 −6 −27 −49 2 34
F −73 −106 −95 −67 −32 0 −18 −6 −34 4 −2 −22 −31 19 24 48
D −87 −122 −105 −81 −45 13 −24 −32 −50 11 −11 −19 −43 19 21 20 49

J H I K N Q L G M B P A O C E F D
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in the FSSP are divided into a representative set and sequence homologs of
the representative set. The representative set contains no pair which have more
than 25% sequence identity. Family indices of the FSSP are obtained by cutting
the tree at levels of 2, 4, 8, 16, 32 and 64 standard deviations above database
average. We convert the structures of the representative set to their structural
code sequences. All the pair alignments of the FSSP (version of Oct 2001) for
the proteins with the same first three family indices in the representative set
are collected for counting aligned pairs of structural codes. The total number of
code pairs are 1,143,911. The substitution matrix derived in the same way as
the BLOSUM was obtained (without sequence clustering) is shown in Table 2,
where a scaling factor of 20 instead of 2 is used to show more details. We call this
conformation letter substitution matrix CLESUM. Henikoff and Henikoff (1992)
introduced for their BLOSUM the average mutual information per amino acid
pair H , which is the Kullback-Leibler distance between the joint model of the
alignment and the independent model. The value of H for our CLESUM equals
1.05, which is close to that for BLOSUM83.

4 Discussion

Biologically important modules have been repeatedly employed in protein evo-
lution by gene duplication and rearrangement mechanisms. They form compo-
nents of fundamental units of structure and function. The presence of modules
provides a guide to classify proteins into module-based families, and helps the
structure prediction. The existence of such conservative recurrent segments sets
a solid foundation for the local analysis. The parameter number of HMM in-
creases quadratically with the number of categories, while only linearly for a
mixture model. We have to compromise between precision and correlation. A
mixture model with fine categories is also promising. We have discretized the
combination of three psuedobond angles formed by four consecutive Cα atoms
to convert the local geometry to 17 coarse-grained conformational letters accord-
ing to a mixture model of the angle distribution.

The Precision of the Conformational Codes. From the correlation between
the conformational codes and the secondary structures, it is not surprising that
there exists a propensity of the codes to amino acids. The coarse-graining would
introduce an error. It is then important to examine the precision of the codes.
For this purpose, we randomly pick up 1,000 points for each code, and calculate
the distance root mean squared deviation (drms) for each of the total 499,500
pairs from their coordinates. The drms of structures a and b is defined without
requiring a structure alignment as the averaged distance pair difference

drms =

⎡
⎣ 2

n(n− 1)

n∑
i=2

i−1∑
j=1

(|rai − raj | − |rbi − rbj |)2
⎤
⎦1/2

, (7)

where rai is the coordinate of atom i in structure a. The averaged coordinate
pair difference, i.e. the coordinate root mean squared deviation crms, is about
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1.2 times of the drms. The most precise code H has an error 0.133±0.060Å,while
the vaguest code L has an error 0.604± 0.365Å. After averaging over the code
relative frequencies, the mean error is 0.330Å.

Structure Alignment via Conformational Codes. The conversion of a 3D
structure of coordinates to its conformational codes requires little computation.
To distinguish from the amino acid sequence, we call the converted code se-
quence the code series, or simply series. Once we transform 3D structures to
1D series, the structure comparison becomes the series comparison. Tools for
analyzing ordinary sequences can be directly applied. We have constructed the
conformational letter substitution matrix CLESUM from the alignments of the
FSSP database. We shall examine the performance of the conformational alpha-
bet derived above.

1urnA avpetRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRS
1ha1b ahLTVKKIFVGGIKEDT EEHHLRDYFEQYGKIEVIEIMTDRGS

CCPMCEALEEEENGCPJGCCIHHHHHHHHIKMJILQEPLDEEEBGAIK
...BBEBGEDEENMFNMLFA....HHHHHKKMJJLCEBLDEBCECAKK

1urnA LKMRGQAFVIFKEVSSATNALRSMqGFPFYDKPMRIQYAKTDSDIIAKM
1ha1b GKKRGFAFVTFDDHDSVDKIVIQ kYHTVNGHNCEVRKAL

...GNGEDBEEALAJHHHHHHIKKGNGCENOGCCEFECCALCCAHIJH
AGCPOLEDEEEALBJHHHHI.IJGALEEENOGBFDEECC.........

Fig. 1. The alignment of 1urnA and 1ha1. The first two lines are their amino acid
sequences aligned according to the FSSP, while the last two lines are the global
Needleman-Wunsch alignment of the conformational code series. Lowercase letters
of amino acids indicate structural nonequivalence.

Holm and Sander (1998) gave an example of the α/β-meander cluster with
four members showing different levels of structural similarity. Their PDB-IDs are
1urnA, 1ha1, 2bopA and 1mli. The structure of 1urnA was taken as the frame to
superimpose the other structures. The structural similarity to 1urnA from high
to low are 1ha1, 2bopA and 1mli. Taking the scaling factor for the CLESUM
to be 2, and using −12 for the the gap-opening penalty and −4 for the gap
extension, the global Needleman-Wunsch alignment of 1urnA and 1ha1 is shown
in Fig. 1, where, in the first two lines, the amino acid sequences aligned according
to the FSSP are also given. It is seen that, except for segment boundaries,
the two alignments coincide. The alignment of the FSSP and the code series
alignment for 1urnA and 2bopA have three common segments falling in positive
score regions of the series alignment. In the alignments for 1urnA and 1mli two
common segments longer than 8 are still seen. As for the amino acid sequence
alignment, in the case of 1urnA and 1ha1 two segments of lengths 13 and 21 of
the sequence alignment coincide with the FSSP, but no coincidence is seen in
the other two cases.
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The conformational codes are local. Even though a global alignment algo-
rithm is used, this does not guarantee that the found alignment corresponds to
the optimal structure superposition. However, the code series alignment does not
affected by the domain move, is then good for analyzing the structure evolution.
For example, the first helix of 1ha1 is shorter than its counterpart in 1urnA by
one turn. The FSSP aligns the N -cap (with codes FA) of the 1ha1 helix to the
helix (with codes HH) of 1urnA, but local structure FA is closer to CC (with
positive scores) than to HH (with negative scores).

It is known that the sequence-structure relationships have not always been
strong. Bystroff and Baker (1998) have built a library of structure-sequence
motifs, which are expected to correspond to functional units recurring in different
protein contexts and to be found in different combinations in distantly related
or functionally unrelated proteins. To identify the structural features that have
strong sequence preferences is to locate peaks of density distribution in the joint
structure-sequence space. Previously, the structure-based clustering was a duty
much heavier than the sequence-based clustering, so one had to start with a
sequence-based clustering, and was kept constantly to run between the structure
and sequence subspaces. It is then interesting to see whether the library can be
improved by clustering directly in the joint structure-sequence space with the
help of conformational codes. This is under study.
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Abstract. We present a novel information extraction (IE) technique, KXtractor, 
which combines a text chunking technique and Mixture Hidden Markov Models 
(MiHMM). KXtractor overcomes the problem of the single Part-Of-Speech 
(POS) HMMs with modeling the rich representation of text where features 
overlap among state units such as word, line, sentence, and paragraph. 
KXtractor also resolves issues with the traditional HMMs for IE that operate 
only on the semi-structured data such as HTML documents and other text 
sources in which language grammar does not play a pivotal role. We compared 
KXtractor with three IE techniques: 1) RAPIER, an inductive learning-based 
machine learning system, 2) a Dictionary-based extraction system, and 3) single 
POS HMM. Our experiments showed that KXtractor outperforms these three IE 
systems in extracting protein-protein interactions. In our experiments, the F-
measure for KXtractor was higher than for RAPIER, a dictionary-based system, 
and single POS HMM respectively by 16.89%, 16.28%, and 8.58%. In addition, 
both precision and recall of KXtractor are higher than those systems. 

1   Introduction 

The proliferation of the biomedical literature available on the Web is overwhelming. 
While the amount of data available to us is constantly increasing, our ability to absorb 
and process this information remains a challenging task. The biomedical literature has 
recently become a target domain that Information Extraction (IE) can be spotlighted 
on. IE scans text for information relevant to some interest, including extracting 
entities, relations, and events. In this paper, we propose a novel IE technique, called 
KXtractor, which employs Mixture Hidden Markov Models (MiHMMs) combined 
with a Support Vector Machine (SVM)-based text chunking technique. 

MiHMM is defined as a mixture of Hidden Markov Models (HMMs) organized in 
a hierarchical structure to help the IE system cope with data sparseness. MiHMM 
takes a set of sentences with contextual cues that were identified by a Support Vector 
Machine-based text chunking technique. MiHMM then learns a generative 
probabilistic model of the underlying state transition structure of the sentence from a 
set of tagged training data. Given a trained probabilistic mixture model of the data, 

C. Priami, A. Zelikovsky (Eds.): Trans. on Comput. Syst. Biol. II, LNBI 3680, pp. 68 – 81, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 
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the system then applies this model to new unseen input documents to predict which 
portions of these documents are likely targets according to the training data template.  

This paper investigates relationships between structure and performance of HMMs 
applied to information extraction problems. The sentence structure is diagnosed with 
POS taggers and an SVM-based text chunking technique. It is intuitive that different 
state configurations are appropriate for different types of extraction problems. What 
would be the effect of using the same structural template to train HMMs for different 
extraction tasks of varying levels of complexity? A simple structural template is used 
for HMM structure learning by the stochastic optimization algorithm in [6].  

KXtractor is different from existing HMM-based approaches as follows: (a) It 
employs probabilistic mixture of HMMs that is hierarchically structured. (b) It 
incorporates contextual and semantic cues into the learned models to extract knowledge 
from the unstructured text collections without any document structures. (c) It adopts a 
SVM text chunking technique to partition sentences into grammatically related group. 
Thus using KXtractor for extracting biomedical entities has the following advantages 
over other approaches: (a) it overcomes the problem of the single POS HMMs with 
modeling the rich representation of text where features overlap among state units such 
as word, line, sentence, and paragraph. By incorporating sentence structures into the 
learned models, KXtractor provides better extraction accuracy than the single POS 
HMMs. (b) it resolves the issues with the single POS HMMs for IE that operate only on 
the semi-structured such as HTML documents and other text sources in which language 
grammar does not play a pivotal role. 

With this novel and robust IE technique, we have extracted protein-protein pairs 
from abstracts in MEDLINE. We have compared the system performance of 
KXtractor with other IE techniques such as a rule-based learning, a dictionary-based, 
and single POS HMM techniques. Our experimental results show that KXtractor is 
superior to these techniques in most cases.   

The rest of the paper is organized as follows: Section 2 summarizes the related 
work. Section 3 describes the overall architecture of KXtractor. Section 4 describes 
the evaluation. Section 5 reports on the experiments. Section 6 concludes the paper. 

2   Related Works 

Recently, there have been extensive studies on applying IE techniques to the 
biomedical literature.  Much attention has been paid in extracting biomedical entities 
such as proteins or genes and their relations. Most of these studies adopt information 
extraction techniques, using a curated lexicon or natural language processing for 
identifying relevant tokens such as words or phrases in text [18].   

In the area of named entity extraction, Fukuda et al. [8] extract protein names with 
hand-crafted rules. Although they reported that experimental results were competitive 
based on an F-value of 0.92, the results were not replicated and their method relied on 
manually created rules. Proux et al. [15] used single word names only with selected 
test set from 1200 sentences coming from Flybase.  Collier et al. [4] adopted Hidden 
Markov Models (HMMs) for 10 test classes with small training and test sets. 
Krauthammer et al. [10] used a BLAST database with letters encoded as 4-tuples of 
DNA. Narayanaswamy et al. [14] used a Part of Speech (POS) tagger for tagging the 
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parsed MEDLINE abstracts. Although [14] and his colleagues implemented an 
automatic protein name detection system, the small number of words used made it 
difficult to demonstrate the usability of their system. 

The second target object type of biomedical literature extraction is relation 
extraction. Leek [12] applied HMM techniques to identify gene names and 
chromosomes through heuristics. Blaschke et al. [1] extracted protein-protein 
interactions based on co-occurrence of the form “… p1…I1… p2” within a sentence, 
where p1, p2 are proteins and I1 is an interaction term. Protein names and interaction 
terms (e.g., activate, bind, inhibit) are provided as a “dictionary.” Pustejovsky et al. 
[16] extracted an “inhibit” relation for the gene entity from MEDLINE. Jenssen et al. 
[9] extracted gene-gene relations based on co-occurrence of the form “… g1…g2…” 
within a MEDLINE abstracts, where g1 and g2 are gene names. Gene names were 
provided as a “dictionary”, harvested from HUGO, LocusLink, and other sources. 
Although their study uses 13,712 named human genes and millions of MEDLINE 
abstracts, no extensive quantitative results are reported and analyzed.  

Friedman et al. [7] extracted a pathway relation for various biological entities from 
a variety of articles. In their work, the precision of the experiments is high (from 79-
96%). However, the recall was relatively low (from 21-72%). Bunescu et al. [2] 
conducted protein/protein interaction identification with several learning methods 
such as pattern matching rule induction (RAPIER), boosted wrapper induction (BWI), 
and extraction using longest common subsequences (ELCS). ELCS automatically 
learns rules for extracting protein interactions using a bottom-up approach. They 
conducted experiments in two ways; one with manually crafted protein names and the 
other with the extracted protein names by their name identification method. In both 
experiments, Bunescu et al. [2] compared their results with human-written rules and 
showed that machine learning methods provides higher precision than human-written 
rules. 

KXtractor is differentiated from the previous approaches in that syntactical, as well 
as semantic cues, of input sentences are identified and incorporated into the extraction 
engines. By combining the text chunking technique and Mixture Hidden Markov 
Models, KXtractor takes advantage of sentence structures and patterns embedded in 
plain English sentences.  

3   System Architecture 

Figure 1 illustrates the system architecture of KXtractor. The system consists of two 
major components: 1) sentence chunking by SVM component and 2) relation 
extraction by the MiHMM component.   

In the sentence chunking by SVM component, input data is plain text consisting of 
stitles and abstracts. The input data is separated into sentences. A set of regular 
expression rules are applied to parse sentences. For a parsed sentence, we applied an 
integrated POS tagging technique proposed by Song et al. [20] to tag sentences with 
POS. With SVM-based text chunking technique, these POS tagged sentences are then 
grouped into chunks of different phrase types such as noun, verb, and prepositions. 
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In the relation extraction by MiHMM component, MiHMM is applied to the 
grouped phrases by the SVM text chunking technique.  The target state, which is a 
+target noun group containing proteins, is extracted with hierarchically structured 
HMMs. Finally protein-protein pairs are extracted from the target states within a 
sentence by re-applying MiHMM to the target state groups. 

POS tagged sentence Chunked sentence
{ Noun group,
  Verb group,
  Preposition group,
  Conjunction group,
  Adverb group }

Trained HMM
models

Chunking sentences

Extracting the target state
with MiHMM

Training models

Marking up training data

Extracted target
noun groups

Modeling sentence
structure

Extracting the target object

Knowledge Base (KB)
for extracted tuples

Updating KB

Train data

Test data

Look-up

Sentence Chunking by
SVM component

Relation Extraction by
MiHMM component

Raw data

Tagging sentence with POS

 

Fig. 1. System architecture of KXtractor 

The results of running KXtractor are a set of tuples related to protein-protein pair. 
KXtractor stores these tuples in the knowledge base and resets the token statistics for 
the next input data. The detailed description of the components is provided in the sub-
sections below. 

Figure 2 illustrates the procedure of converting a raw sentence from PubMed to the 
phrase-based units grouped by the SVM text chunking technique. The top box shows a 
sentence that is part of an abstract retrieved from PubMed. The middle box illustrates 
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JJ denotes adjective, IN denotes preposition, DT denotes determiner, CD cardinal number, NN 
denotes singular noun, NNP denotes proper noun, VBZ denotes verb, VBN denotes verb, RB 
denotes adverb 

Fig. 2. A procedure of sentence parsing 

the parsed sentence by POS taggers. The bottom box shows the final conversion made 
to the POS tagged sentence by the SVM based text chunking technique. 

3.1   Sentence Chunking by SVM Component 

Text chunking is defined as dividing a text in syntactically correlated parts of words 
[11]. Chunking consists of two processes - first identifying proper chunks from a 
sequence of tokens (such as words), and second classifying these chunks into some 
grammatical classes. Major advantages of using text chunking over full parsing 
techniques are that partial parsing such as text chunking is much faster, more robust, 
yet sufficient for IE.  

Support Vector Machine (SVMs) based text chunking was reported to produce the 
highest accuracy in a text chunking task [11]. The SVMs-based approach such as 
other inductive-learning approaches takes as input a set of training examples (given as 
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binary valued feature vectors) and finds a classification function that maps them to a 
class.  

In general, SVM models can be characterized as follows: First, SVMs are known 
to robustly handle large feature sets and to develop models that maximize their 
generalizability. This makes them an ideal model for IE. Generalizability in SVMs is 
based on statistical learning theory and the observation that is useful to misclassify 
some of the training data so that the margin between other training points is 
maximized [5]. This is particularly useful for real world data sets that often contain 
inseparable data points.  Although training is generally slow, the resulting model is 
usually small and runs quickly as only the patterns that help define the function that 
separates positive from negative examples. In addition, SVMs are binary classifiers 
and so we need to combine SVM models to obtain a multiclass classifier. 

N denote noun, P denotes preposition, T denotes target, V denote verb 

Fig. 3. Noun phrase based Mixture Hidden Markov Models 

Due to the nature of the SVM as a binary classifier it is necessary in a multi-class 
task to consider the strategy for combining several classifiers. In this paper, we use 
Tiny SVM [5] in that Tiny SVM performs well in handling a multi-class task. 



74 M. Song et al. 

 

3.2   Relation Extraction by MiHMM Component 

Figure 3 is a schematic representation of how our MiHMM works. Our phrase group 
includes 14 phrase types. Our models are constructed with the assumption that the 
model is fully connected, which means that the model emits a segment of any type at 
any given position within the sentence. Bold boxes in Figure 3 indicate the target 
noun group that contains either proteins or a protein-protein pair. Each box represents 
phrase group and circles inside the box show the POS tags assigned to words in order 
that appears in the sentence.   

In a generic Hidden Markov Model, it is typical to define a number of states and a 
number of transitions between those states.  The more complex the HMM, the better it 
can represent a document, but also the more data that is needed to dependably train 
the model and avoid errors due to noise in the data.  Consequently there is an apparent 
tradeoff between representational efficacy and training efficiency, and this tradeoff 
varies from domain to domain. 

Therefore, rather than deciding on just one model, it is often easier to use a mixture 
of models and decide later on how much to weight each model.  This approach is quite 
effective because it allows one to model a document at varying degrees of granularity 
by effectively using a hierarchical model. At the same time it also retains the advantages 
of each model.  That is, if the data is sparse, the simpler model will likely perform better 
and thus be weighted more during the extraction phase.  And if there is an abundance of 
data, the more complex model can be robustly trained and be weighted more heavily 
during the extraction phase. For MiHMM, a basic set of three mixture models was used 
and are shown in Figure 4.  A similar mixture model was proposed by [6]. Comparing 
our approach to Freitag and McCallum’s, their model utilizes fairly complex prefix and 
suffix structures.  Despite the simplicity of these models however, the primary benefit of 
these models that they can be trained on very sparse data. 

The model is trained with maximum likelihood parameter estimation. From the 
sentence training set we can easily obtain the information concerning the frequency 
that a given state or observation occurred and the frequency with which a state 
transition or observation emission was made. 

The parameters of the model are the transition probabilities )( qqP ′→ that one 

state follows another and the emission probabilities )( qqP ′↑  that a state emits a 

particular output symbol. The probability of a string x being emitted by an HMM is 
computed as a sum over all possible paths by: 

 

∏
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where 0q and 1lq are restricted to be Iq  and Fq  respectively, and is an end-of-string 
token. 

The forward algorithm can be used to calculate this probability [17]. The 
observable output of the system is the sequence of symbols that the states emit, but 
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BKG denotes Background 

Fig. 4. Graphic representation of MiHMM 

the underlying start sequence itself is hidden.  One common goal of learning problems 

that use HMMs is to recover the state sequence )|( MxV that has the highest 
probability of having produced an observation sequence: 
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Determining this state sequence is efficiently performed by dynamic programming 
with the Viterbi algorithm [21]. 

4   Evaluation 

To evaluate KXtractor, we compare it with three other well-known IE methods: 1) the 
dictionary-based extraction, 2) RAPIER, a rule-based machine learning extraction, 
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and 3) single POS HMM. Performance of these IE systems is measured by precision, 
recall, and the F-measure. The data used for experiments are retrieved from 
MEDLINE. 

4.1   Data Collection 

The IE task conducted in this paper is a multiple slot extraction task. The goal of our 
IE task is to extract instances of n-ary relations; that is, protein-protein interactions. A 
MEDLINE record may contain multiple proteins but this relation holds only among 
certain pairs of these proteins.      

The protein-protein interaction data sets are composed of abstracts gathered from 
the MEDLINE database [13]. MEDLINE contains bibliographic information and 
abstracts from more than 4000 biomedical journals. From this huge text corpus, we 
combined and utilized MEDLINE data sets provided by Skounakis et al. [19] and 
Bunescu et al. [2]. The data sets consist of 1700 MEDLINE records. These data sets 
characterize physical interactions between pairs of proteins. In terms of sentences, the 
data sets consist of 6417 positive and 46123 negative sentences. It contains 10123 
instances of 913 protein-protein pairs. To label the sentences in these abstracts, we 
matched the target tuples to the words in the sentence. A sentence that contained 
words that matched a tuple was taken to be a positive instance. Other setences were 
considered to be negative instances.  

4.2   Dictionary-Based Extraction 

We developed a Dictionary-based extraction system proposed by Blaschke et al. [1]. 
The following six steps were taken to extract protein-protein interactions: 1) the protein 
names are collected from the Database of Interacting Proteins (DIP) and Protein-Protein 
Interaction Database (PPID) databases. The synonyms of the target proteins are 
manually provided. 2) The 14 verbs, indicating actions related to protein interaction, are 
used. 3) Abstracts are provided from MEDLINE. 4) The passages containing target 
proteins and actions are identified. 5) The original text is parsed into fragments 
preceding grammatical separators. 6) The final step is to build protein-protein pairs.  

4.3   RAPIER 

To evaluate the performance of KXtractor, we compare KXtractor with RAPIER. 
RAPIER [3] is a well-known IE system that was developed with a bottom-up 
inductive learning technique for learning information extraction rules. In order to use 
the slot-filling IE systems like RAPIER for extracting relations, we adapt the Role-
filler approach proposed by Bunescu et al. [2]. 

The Role-filler approach allows for extracting the two related entities into different 
role-specific slots. For protein interactions, Bunescu and his colleagues [2] name the 
roles interactor and interactee. As indicated by the role names, protein-protein 
interactions are defined with the assumption that proteins appear in the same sentence. 
Bunescu et al. [2] extracted the related pairs using the following criteria: 1) the 
interactors and interactees appear in the same sentence, 2) each interactor is associated 
with the next occurring interactee in the segment, and 3) If the number of the interactors 



 KXtractor: An Effective Biomedical Information Extraction Technique 77 

 

and the interactees are unequal, use the last interactor (interactee) for building the 
remaining pairs. 

4.4   Single POS HMM 

In order to verify that our MiHMM models are superior to a simple HMM, we 
develop a simple HMM, based on single terms and a single model that incorporate 
less grammatical information. We implemented single-level HMMs whose states emit 
words, but are typed with part-of-speech (POS) tags so that a give state can emit 
words with only a single POS. The Viterbi algorithm extracts information from 
documents modeled by an HMM.  With the fix structure, the objective of learning is 
to give high probabilities to training documents. The result of learning is estimated 
probabilities for vocabularies and transitions. 

4.5   Sample Output 

The sample outcome of running KXtractor is illustrated in Table 1. Doc ID indicates 
the PubMed record ID that contains an abstract that the target protein pairs are 
extracted from. 

Table 1. Sample results of running KXtractor 

 

Doc ID: PUBMED8681382 

Sentence ID: 1 

Target Protein 1: yta10p 

Target Protein 2: yta12p 

 
 
Doc ID: PUBMED8182122 
Sentence ID: 5 
Target Protein 1: spo7p 

Target Protein 2: nem1p 
 

Sentence ID is the ID assigned to the sentence 
by KXtractor in the PubMed record. Target 
protein 1 and target protein 2 indicates the 
protein pairs that KXtractor extracts for the 
task of protein-protein interaction. 

5   Experiments 

We conducted experiments to evaluate the performance of KXtractor on the task of 
protein-protein interaction extraction. In experiments the machine learning systems 
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were trained using the abstracts with proteins and their interactions, processed by the 
text chunking technique. With these set of data, the IE systems extract interactions 
among these proteins. This gives us a measure of how the protein interaction 
extraction systems alone perform. 

Performance is evaluated using ten-fold cross validation and measuring recall and 
precision. As the task of interest is only to extract interacting protein-pairs, in our 
evaluation we do not consider matching the exact position or every occurrence of 
interacting protein-pairs within the abstract. 

To evaluate our IE systems, we construct a precision-recall graph. Recall denotes 
the ratio of the number of slots the system found correctly to the number of slots in 
the answer key, and precision is the ratio of the number of correctly filled slots to the 
total number of slots the system filled. 

Table 2. Comparison of extraction system performance 

Extraction System Precision Recall F-Measure 

Dictionary-based 
extraction 62.31% 32.81% 36.10% 

RAPIER 60.17% 34.12% 35.49% 

Single POS HMM 67.40% 47.23% 43.80% 

KXtractor 70.23% 51.21% 52.38% 

Our experiments show that RAPIER produces relatively high precision but low 
recall. The similar results are observed in the dictionary-based extraction method 
which gives also high precision but low recall. Single POS HMM produces the 
second best results, although recall is relatively lower than precision. Among these 
three systems, KXtractor outperforms RAPIER, Dictionary, and single POS HMM in 
terms of precision, recall, and the F-measure. As shown in Table 2, the F-Measure of 
KXtractor is 52.38% whereas RAPER is 35.49%, dictionary is 36.10%, and single 
POS HMM is 43.80%.  

Figure 5 shows the precision-recall graphs of KXtractor, RAPIER, Dictionary, and 
single POS HMM-based extraction for the protein-protein interaction data set. The curve 
for KXtractor is superior to the curves for RAPIER, Dictionary, and single POS HMM. 

We repeated the same experimental tests over the five different datasets. Figure 6 
shows the results of the four extraction methods, KXtractor, Single POS HMM, 
RAPIER, and Dictionary in F-Measure. KXtractor outperforms the other three 
algorithms. Accuracy of KXtractor ranges between 51.23% and 59.36% in F-
Measure. Single POS HMM ranges between 43.8% and 45.93% in F-Measure. 
RAPIER ranges between 35.49% and 38.84% in F-Measure. Dictionary ranges 
between 36.1% and 39.+95% in F-Measure. 
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Fig. 5. Precision-recall graph for extracting protein-protein pairs 

 

Fig. 6. Performance Comparison of Four Extraction Algorithmsover Five Different Data sets 

6   Conclusion 

In this paper, we proposed a novel and high quality information extraction system, 
called KXtractor, a noun phrase-based Mixture Hidden Markov Models (MiHMM) 
system. 
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KXtractor is differentiated from other approaches in that (a) It overcomes the 
problem of the single POS HMMs with modeling the rich representation of text where 
features overlap among state units such as word, line, sentence, and paragraph. By 
incorporating sentence structures into the learned models, KXtractor provides better 
extraction accuracy than the single POS HMMs. (b) It resolves the issues with the single 
POS HMMs for IE that operate only on the semi-structured such as HTML documents 
and other text sources in which language grammar does not play a pivotal role. 

KXtractor consists of two major components: 1) text chunking and 2) Mixture 
Hidden Markov Models (MiHMM) component.  The text chunking component groups 
the sentence with Support Vector Model (SVM) technique. MiHMM takes a set of 
sentences processed by the text chunking technique. MiHMM then learns a generative 
probabilistic model of the underlying state transition structure of the sentence from a 
set of tagged training data. Given a trained probabilistic mixture model of the data, 
the system applies this model to new (unseen) input documents to predict which 
portions of these sentences are likely targets according to the training data template.  

We compared KXtractor with three well-known IE techniques: 1) RAPIER, a rule-
based machine learning system, 2) Dictionary-based extraction system which was 
proposed by Blaschke at al. [1], and 3) single POS HMM.  Our experiments showed 
that KXtractor outperforms other IE techniques such as RAPIER, dictionary-based, 
and single POS HMM in extracting protein-protein interactions in terms of F-measure. 
The F-Measure of KXtractor is 52.38% whereas RAPER is 35.49%, dictionary is 
36.10%, and single POS HMM is 43.80%. In addition, both precision and recall of 
KXtractor are higher than those of RAPIER, Dictionary, and single POS HMM. 

In follow-up papers, we will apply KXtractor to other types of relation extractions 
such as subcellular-localization relation extraction. We also plan to compare 
KXtractor with other IE systems such as MaxEnt and SVM. 
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Abstract. Phylogenetic networks model evolutionary histories in the presence of
non-treelike events such as hybrid speciation and horizontal gene transfer. In spite
of their widely acknowledged importance, very little is known about phylogenetic
networks, which have so far been studied mostly for specific datasets.

Even when the evolutionary history of a set of species is non-treelike, individ-
ual genes in these species usually evolve in a treelike fashion. An important ques-
tion, then, is whether a gene tree is “contained” inside a species network. This
information is used to detect the presence of events such as horizontal gene trans-
fer and hybrid speciation. Another question of interest for biologists is whether a
group of taxa forms a clade based on a given phylogeny. This can be efficiently
answered when the phylogeny is a tree simply by inspecting the edges of the tree,
whereas no efficient solution currently exists for the problem when the phylogeny
is a network. In this paper, we give polynomial-time algorithms for answering the
above two questions.

1 Introduction

Phylogenies are the main tool for representing the relationships among biological en-
tities. Their pervasiveness has led biologists, mathematicians, and computer scientists
to design a variety of methods for their reconstruction. Furthermore, extensive studies
have been focused on the performance of these methods under different models and
settings, as well as on the combinatorial and biological properties of trees (e.g., [7, 2]).
However, almost all such methods construct trees, and almost all studies have been
aimed at trees. Yet, biologists have long recognized that trees oversimplify our view of
evolution, since they cannot take into account such events as hybridization, lateral gene
transfer, and recombination. These non-tree events give rise to edges that connect nodes
on different branches of a tree, giving rise to a directed acyclic graph structure that is
usually called a phylogenetic network.

A gene tree is a model of how a gene evolves through duplication, loss, and nu-
cleotide substitution. Gene trees can differ from one another as well as from the species
phylogeny. Such differences arise during the evolutionary process due to events such as
duplication and loss, whereby each genome may end up with multiple copies of a given
gene—but not necessarily the same copies that survive in another genome. Unless the
genome is very well sampled, only a subset (sometimes only one copy, in fact) of the
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gene is used in phylogenetic analyses. As a result, the phylogeny for the gene may not
agree with the species phylogeny, nor with the phylogeny for another gene. Because
the gene copy has a single ancestral copy, barring recombination, the resulting history
is a branching tree. Point mutations can cause some of the copies to be imperfect rep-
resentations of the original, but this process does not compromise the existence of the
(gene) tree. Events such as recombination, hybrid speciation, and lateral gene transfer
break up the genomic history into many small pieces, each of which has a strictly tree-
like pattern of descent [4]. Thus, within a species phylogeny, many tangled gene trees
can be found, one for each nonrecombined locus in the genome. Incongruence among
gene trees is a powerful tool for detecting recombination, hybrid speciation, and other
non-treelike evolutionary events (e.g., see [6]). While testing for incongruence between
two (gene) trees can be done in a straightforward manner, it is not as simple for testing
the incongruence between a tree and a network, since the number of trees “inside” a
network grows exponentially with the number of non-treelike events. In this paper, we
give the first polynomial-time algorithm for solving this problem.

A phylogeny can be viewed as a collection of clusters of taxa (each defined as the
set of leaves in a subtree). Various approaches for reconstructing phylogenies (trees and
networks) have been proposed based on this view (see, e.g., [1, 3]). An interesting bio-
logical question, then, is whether a group of taxa forms a cluster in a given phylogeny.
This question can be answered in a straightforward manner when the phylogeny is a
tree, since each edge in a tree defines a unique cluster. However, the number of clusters
in a phylogenetic network grows exponentially with the number of non-treelike events,
and hence an efficient algorithm for solving the problem is not straightforward. In this
paper, we present the first polynomial-time algorithm for solving this problem.

The rest of the paper is organized as follows. In Section 2 we give a background
on trees, clades and clusters. In Section 3 we briefly describe evolutionary events that
necessitate phylogenetic networks, and describe the graph-theoretic model of phyloge-
netic networks that we use in the paper, along with combinatorial properties that follow
from the model. In Section 4 we introduce the concepts of network decomposition and
dependency graphs. computing these structures forms the core of our algorithms. In
Section 5, we define reduced inheritance profiles and present the main lemma on which
the our algorithms are based. In Section 6 we describe our polynomial-time algorithms
for solving the aforementioned decision problems. We conclude in Section 7 with a
summary of our main results and directions for future research.

2 Background: Phylogenetic Trees

2.1 Notation

In this paper, and unless stated otherwise, all graphs are directed. Given a graph G,
E(G) denotes the set of (directed) edges of G and V (G) denotes the set of nodes of G.
We write (u, v) to denote a directed edge from node u to node v. If e = (u, v) is an
edge from u to v, we call u the tail and v the head of the edge and say that u is a parent
of v. The indegree of a node v, denoted indeg(v), is the number of edges whose head is
v, while the outdegree of v, denoted outdeg(v), is the number of edges whose tail is v.
The degree of a node v is the sum of its indegree and outdegree. In an undirected graph,
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the degree of a node v is the number of edges incident with v. A node u is redundant if
indeg(u)=outdeg(u) = 1. A directed path of length k from u to v in G is a sequence
u0u1 · · ·uk of nodes with u=u0, v=uk, and ∀i, 1 ≤ i ≤ k, (ui−1, ui)∈E(G). Node
v is reachable from u in G, denoted u � v, if there is a directed path in G from u to v.

2.2 Phylogenetic Trees, Bipartitions and Clusters

A phylogenetic tree is a leaf-labeled tree that models the evolution of a set of taxa
(species, genes, languages, placed at the leaves) from their most recent common an-
cestor (placed at the root). The internal nodes of the tree correspond to the speciation
events.

Mathematically, A rooted phylogenetic tree is a rooted tree without redundant nodes
and whose leaves are labelled distinctively. An unrooted phylogenetic tree is a rooted
phylogenetic tree with the root suppressed. Every edge e in an unrooted leaf-labeled
tree T defines a bipartition (or, split) π(e) on the leaves (induced by the deletion of e),
so that we can define the set Π(T ) = {π(e): e ∈ E(T )}. Every edge e in a rooted
leaf-labeled tree T defines a cluster c(e) of leaves (those leaves that are reachable from
the root through e), so that we can define the set C(T ) = {c(e): e ∈ E(T )}. A clade of
a rooted tree T is the entire subtree rooted at a node of T ; the set of all leaves in a clade
correspond to a cluster of T .

There is a many-to-one relationship between rooted and unrooted phylogenetic
trees: there are many ways to root an unrooted phylogenetic tree. Based on this we
also see an association between clusters of a rooted tree T and bipartitions of the un-
rooted version of T : each cluster of a rooted tree T equals one of the two sets in the
bipartition induced by an edge e in the unrooted version of T .

3 Phylogenetic Networks

3.1 Non-tree Evolutionary Events

We now describe two types of evolutionary events that give rise to network (as op-
posed to tree) topologies: hybridization and lateral gene transfer. In hybridization, two
lineages recombine to create a new species, as symbolized in Figure 1(a). We can dis-
tinguish between diploid hybridization, in which the new species inherits one of the
two homologs for each chromosome from each of its two parents—so that the new
species has the same number of chromosomes as its parents, and polyploid hybridiza-
tion, in which the new species inherits the two homologs of each chromosome from
both parents—so that the new species has the sum of the numbers of chromosomes of
its parents. Prior to hybridization, each site on each homolog has evolved in a tree-like
fashion, although, due to meiotic recombination, different strings of sites may have dif-
ferent histories. Thus, each site in the homologs of the parents of the hybrid evolved in
a tree-like fashion on one of the trees contained inside (or induced by) the network rep-
resenting the hybridization event, as illustrated in Figures 1(b) and 1(c). In lateral gene
transfer, genetic material is transferred from one lineage to another without resulting in
the production of a new lineage, as symbolized in Figure 1(d). In an evolutionary sce-
nario involving lateral transfer, certain sites are inherited through lateral transfer from
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Fig. 1. Hybrid speciation: the network in (a) and its two induced trees in (b) and (c). Horizontal
transfer: the network in (d) and its two induced trees in (e) and (f).

another species, as in Figure 1(e), while all others are inherited from the parent, as in
Figure 1(f).

When the evolutionary history of a set of taxa involves processes such as hybridiza-
tion or lateral gene transfer, trees can no longer represent the evolutionary relationship;
instead, we turn to rooted directed acyclic graphs (rooted DAGs).

3.2 Phylogenetic Networks: Model and Properties

In this paper, we adopt the general model of (reduced) phylogenetic networks, as de-
scribed in [5]).

Definition 1. A phylogenetic network is a connected directed acyclic graph N =
(V, E), where V can be partitioned into {r} ∪ Tr(N) ∪Nt(N) ∪ L(N), where:

1. Node r is the root; it has indegree 0.
2. Set Tr(N) is the set of tree nodes; each node u in Tr(N) has indegree 1 and

outdegree > 1.
3. Set Nt(N) is the set of network nodes; each node v in Nt(N) has indegree 2 and

outdegree 1.
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4. Set L(N) is the set of leaf nodes (taxa); each node x in L(N) has indegree 1
and outdegree 0. Each node x in L(N) is labeled uniquely by an integer i, where
1 ≤ i ≤ |L(N)|.

Figures 1(a) and 1(d) give two examples of phylogenetic networks. Given a network
N , we classify its edges as tree edges and network edges. An edge e = (u, v) is a tree
edge if v is a tree node or a leaf; otherwise, it is a network edge. Biologically, the tree
nodes correspond to regular speciation events in the evolutionary history, whereas net-
work nodes correspond to reticulation events (e.g., hybridization, lateral gene transfer,
recombination, etc.).

We say that network N is binary if the root and all tree nodes of N have outdegree 2.
In this paper, and unless noted otherwise, all networks are binary. Further, we assume
that if u is a tree node and (u, v) and (u, w) are the two edges incident from u, then at
least one of the two nodes v and w is a tree node.

A forced contraction is an operation on a graph in which we delete a redundant
node and replace the two edges incident to it by a single edge. An augmentation is an
operation on a graph in which an edge (u, v) is replaced by two edges (u, x) and (x, v),
where x is a new node. A DAG N is a pseudo-network if a network N ′ can be obtained
by applying a sequence of forced contraction operations to N (alternately, if N can
be obtained by applying a sequence of augmentation operations to a network N ′). We
generalize the clade concept to networks as follows. Given a network N , we say that the
DAG N ′, rooted at node x, is a network clade of N , if there exists an edge e = (u, x)
in N whose removal disconnects N , thus creating two components, one of which is N ′

(rooted at x). If network clade N ′ does not contain network nodes, i.e., N ′ is a tree, we
refer to N ′ simply as a clade. Given a network N , and a clade N ′, we say that N ′ is
maximal if N does not contain any clade N ′′ such that N ′ ⊂ N ′′.

A phylogenetic network N = (V, E) defines a partial order on the set V of nodes,
and based on this partial order, we assign times to the nodes of N ; t(u) denotes the
time associated with node u. If there is a directed path p from node u to node v, such
that p contains at least one tree edge, then t(u) < t(v). If e = (u, v) is a network edge,
then t(u) = t(v) (since reticulation events occur instantaneously). Further, if there is a
directed path from node u to node v, u �= v, we say that u is above v and that v is below
u, both denoted by u > v. We say that node u in N is a lowest network node if (1) u is
a network node, and (2) for any network node v, v �= u, we have u �� v.

Lemma 1. Let N be a network, u be a lowest network node, and e = (u, v) be the
edge incident from u. Then, the subgraph N ′ ⊂ N rooted at v is a maximal clade.

Proof. By definition of lowest network node, all nodes below u are either tree nodes or
leaves; hence, N ′ is a clade. Assume N ′′ is also a clade, and that N ′ ⊂ N ′′. Then, N ′′

contains node u, which is a network node – a contradiction. Therefore, N ′ is a maximal
clade.

Given a network N and two nodes u and v in N , we say that u and v cannot co-exist
in time if there is a directed path p = 〈u0, u1, . . . , uk〉 in N , where u0 = u and uk = v,
and p satisfies three properties: (1) p contains at least one tree edge, (2) for any tree
edge e on p, we have e = (ui, ui+1) (may not be (ui+1, ui)), 0 ≤ i ≤ k − 1, and (3)
the orientation of a network edge on p is irrelevant.
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Since events such as hybridization and lateral gene transfer occur between two lin-
eages (nodes in the network) that co-exist in time, a phylogenetic network N must
satisfy the synchronization property, which states that if two nodes x and y cannot co-
exist in time, then there do not exist two edges e = (x, v) and e′ = (y, v) in N . If a
network N violates the synchronization property (which may happen due to missing
taxa in the phylogenetic analysis), then N can be augmented to remedy this violation,
as we show in the following theorem.

Theorem 1. For any phylogenetic network N , there exists an augmentation of N into
a pseudo-network N ′ that satisfies the synchronization property.

Proof. If N satisfies the synchronization property, then N ′ = N . Assume N does
not satisfy the synchronization property, and let e1 = (x1, v) and e2 = (x2, v) be two
network edges such that x1 � x2. Let N ′ be the network obtained from N by replacing
edge e1 by two new edges e′1 = (x1, y) and e′′1 = (y, v), where y is a new node. Now,
the network node v has the two parents y and x2. It is clear that x2 �� y, since the only
way to reach y is through x1, and x2 �� x1 (otherwise, N would be cyclic). It is also
clear that y �� x2, since if y reaches x2, it has to be via a path that passes through v,
and since x2 reaches v, N would be cyclic. We apply the same process to every pair of
edges that violates the synchronization property.

We write N |L′ , where L′ ⊂ L(N), to denote the subgraph N ′ obtained from N
by removing all leaves not in L′, and then applying forced contraction operations and
removal of nodes of outdegree 0 (other than the leaves in L′). We now describe some
properties of phylogenetic networks.

Proposition 1. Let N = (V, E) be a phylogenetic network.

1. outdeg(r) +
∑

s∈Tr(N)(outdeg(s)− 1) = |Nt(N)|+ |L(N)|.
2. For every node v ∈ V , r � v.
3. For every node v ∈ V , there exists at least one leaf l below v.
4. (Taxon sampling) N |L′ is a phylogenetic network, for any L′ ⊂ L(N).

Proof.

1. By the observation
∑

v∈V outdeg(v) =
∑

v∈V indeg(v).
2. Let V ′ be the set of all nodes that cannot be reached from r. Let x be a maximal

element (in terms of the partial order induced by N on V ) in V ′; then indeg(x) = 0
(otherwise N would be cyclic). However, the only node with indegree 0 is r – a
contradiction.

3. Let R(v) = {u ∈ V : v > u}. If R(v) = ∅, then outdeg(v) = 0, i.e., v is a leaf. If
R(v) �= ∅, and since N is acyclic (and finite), then there exists at least one node x
in R(v) with outdegree 0. It follows from Definition 1 that x is a leaf.

4. Straightforward.

In this paper, we focus on binary networks, but the results extend to general net-
works in a straightforward manner.
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3.3 Networks and Trees

There is a fundamental connection between (species) networks and (gene) trees. A gene
tree is a model of how a gene evolves through duplication, loss, and nucleotide substi-
tution. Gene trees can differ from one another as well as from the species phylogeny.
Such differences arise during the evolutionary process due to events such as duplication
and loss, whereby each genome may end up with multiple copies of a given gene—but
not necessarily the same copies that survive in another genome. Unless the genome is
very well sampled, only a subset (sometimes only one copy, in fact) of the gene is used
in phylogenetic analyses. As a result, the phylogeny for the gene may not agree with
the species phylogeny, nor with the phylogeny for another gene. Because the gene copy
has a single ancestral copy, barring recombination, the resulting history is a branching
tree. Point mutations can cause some of the copies to be imperfect representations of the
original, but this process does not compromise the existence of the (gene) tree. Events
such as recombination, hybridization, and lateral gene transfer break up the genomic
history into many small pieces, each of which has a strictly treelike pattern of descent
[4]. Thus, within a species phylogeny, many tangled gene trees can be found, one for
each nonrecombined locus in the genome. Yet, in the presence of these processes, the
evolutionary history of the species fails to be modeled as a tree; in this case, networks
are used to model the species phylogeny. We say that a (species) network “induces” (or,
contains) a (gene) tree or alternately, a (gene) tree is induced by (or, contained inside) a
(species) network. We formalize this concept as follows.

Let N be a network with p network nodes h1, h2, . . . , hp. Further, assume that the
two edges incident into hi are ei1 and ei2 . An inheritance profile, IP , for N is a set
of size p and which contains exactly one of the two edges ei1 and ei2 for each network
nodes hi. A rooted tree T is induced by (or, contained in) a network N if there exists an
inheritance profile IP such that T can be obtained from N as follows: for network node
hi, if ei1 ∈ IP , remove edge ei2 ; otherwise, remove edge ei1 . (and then apply forced
contraction operations to the resultant graph). Biologically, the evolutionary history of
a gene within the species network corresponds to a tree T induced by N . Associated
with this tree is an inheritance profile IP that decides how to obtain T from N ; in this
case, we say that IP is a valid inheritance profile that induces T . A network N induces
(or, contains) a cluster C, C ⊆ L(N), if there exists a tree T such that N induces T
and C is a cluster of T .

Proposition 2. Let N be a nonempty network. Then N induces at least one phyloge-
netic tree.

Proof. We show the proposition by induction on the number of leaves in N . The base
case (one leaf) is trivial. Assume the hypothesis is true for |L(N)| = n, and consider
the case where |L(N)| = n + 1. Let Nn be the DAG obtained by restricting N to the
first n leaves. By the induction hypothesis, there exists a tree Tn that is induced by
Nn. By Proposition 1, there exists a path Pn+1 connecting the root and leaf n + 1, and
there exists a node v that is the lowest node in both Pn+1 and the embedding of Tn in
Nn+1. T is obtained by joining the edges and nodes below v in Pn+1 and Tn. Since
T is connected by construction, if T is not a tree, then there exists a (not necessarily
oriented) cycle in T . This contradicts the choice of v as the lowest node in Pn+1.
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As mentioned before, deciding whether a cluster or a tree are induced by a given
network plays a significant role in solving major problems such as network recon-
struction, gene tree and species network relationships, exploring the network space in
hill-climbing heuristics for solving hard optimization network reconstruction problems,
measuring distances and error rates between networks in simulation studies, and many
other tasks. We now formalize the two decision problems.

Problem 1. (THE NETWORK-TREE CONTAINMENT PROBLEM)

Input: A phylogenetic network N and a tree T .
Question: Does N contain T ?

Problem 2. (THE NETWORK-CLUSTER CONTAINMENT PROBLEM)

Input: A phylogenetic network N and a cluster C.
Question: Does N contain C?

A trivial approach for solving the Network-Cluster Containment Problem is to find
“the” lowest common ancestor, x, of C in the network N , and test whether the cluster
is contained in the network clade rooted at x. This approach may fail for at least two
reasons: (1) x may not be unique in a network, and (2) the network clade rooted at x may
contain many of the network nodes of N , in which case the search for a solution would
take time that is exponential in the number of network nodes, and hence, probably the
network size.

In Section 6 we show that these two problems can be decided in polynomial time.
In order to obtain these results, we first introduce the concept of network decomposition
which forms the basis for our algorithms.

4 Network Decomposition

Before we give the technical details of our algorithms, we describe the network repre-
sentation we use, which is vital for achieving the running times of the algorithms in the
next sections. We assume that a network N is represented using an n × n adjacency
matrix MN , where n is the number of nodes in the network. We have MN [u, v] = 1
if there is an edge (u, v) ∈ E(N), and MN [u, v] = 0 otherwise. Using this represen-
tation, a forced contraction operation takes O(1) time, and an edge deletion takes O(1)
time, as well.

4.1 Preprocessing Networks

An SH-loop (speciation-hybridization) is a cycle that contains only network edges, and
that consists of two paths p1 and p2, such that p1 and p2 starting from the same tree
node v0, pass through two sets of network nodes, and end at the same network node v1.
Let e1 = (v0, x) and e2 = (v0, y) be the two network edges incident from v0. We break
the SH-loop by removing either e1 or e2, and applying forced contraction operations to
all redundant nodes. We repeat the same process until N is SH-loop-free, i.e., N does
not contain any SH-loops.
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Preprocessing of a network N can be achieved in polynomial time. To prepro-
cess a network, cycles of network edges in the network need to be detected. A depth-
first search achieves this goal. There are at most min{|Tr(N)|, |Nt(N)|} such cycles.
Breaking each cycle by removing an edge, followed by a forced contraction opera-
tion, takes O(1). Therefore, the overall running time of the preprocessing is O(|V (N)|
(|V (N)| + |E(N)|)) = O(|V (N)|2) = O(|E(N)|2) (since in binary networks
|V (N)| = Θ(|E(N)|)). The following result shows that preprocessing a network N
does not change the set of trees induced by N .

Proposition 3. Let N be a phylogenetic network, and let N ′ be the network obtained
after the preprocessing. Then, T (N) = T (N ′).

Proof. Since N ′ is a subgraph of N , we only need to show that each tree T that is
induced by N is also induced by N ′. As each step in the preprocessing removes one
edge from N , it suffices to show this is true if N ′ and N differ by one edge. Consider
an inheritance profile IP that induces T ; if each edge in IP is in N ′, we are done.
Otherwise the edge is in an SH-loop of N , pointing from a tree node v0 to a network
node x (x may be suppressed in N ′). Let y be the other node immediately below v0

in the SH-loop, and let v3 be the lowest network node where the two paths of the SH-
loop meet. Let p1 and p2 be the two paths in the SH-loop containing edges (v0, x) and
(v0, y), respectively. Let z and w be the vertices immediately above v3 in p1 and p2,
respectively. Notice that since p1 and p2 consist of network nodes only (except for v0),
the leaf sets below x, y, and v3 are identical; call it L. Let L′ be the subset of leaves
such that the path to root from each leaf in L′ passes through (v0, x) (it also must pass
through v3); such path necessarily passes through (x, y); we only need to consider the
case when L′ is nonempty. Then IP contains every edge in p1, and no leaf in L′ reaches
the root through nodes only in p2 in T . Hence we can add all edges in p2 and remove
conflicting edges in IP , as they do not lead to leaves from the root. The result is an
inheritance profile for N ′ that also induces T .

4.2 Maximal Clades and Connections

Unless noted otherwise, all networks are SH-loop free. Given a phylogenetic network
N , we seek to decompose N into maximal-size clades and disjoint subgraphs of N that
connect those clades. To formalize this, we first define some concepts.

Given a node x in network N , we say that a network node y (y �= x) in N is x-
convergent if any directed path from y to a leaf of N passes through x. Given a maximal
clade A of N , and the root a of A, we say that subgraph J of N is the connection of
A if J is the subgraph obtained by restricting N to all a-convergent nodes and their
incident edges.

Lemma 2. Let A and J be a clade and its connection, respectively, in a network N .
Then, when reversing the orientation of its edges, J has a rooted tree topology, where
each leaf is a tree node in N and each internal node is a network node in N . Further,
the root of J is a lowest network node.

Proof. Let a be the root of clade A. Assume J has a node v that is a tree node in N .
By Proposition 1 and the definitions of J and a, there does not exist a tree node v′ that
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is reachable from v but not from a; hence, there exists a directed path from v to a and
that consists of network nodes only. Moreover, the path is unique. If there exist two
such paths from v to a then the two paths form an SH-loop. Consider the union of all
such paths to a from speciation nodes in J ; since those paths are unique, it follows that,
when the orientation of the edges in J is reversed, J forms a rooted tree, and the leaves
of J are the set of nodes in J that are tree nodes in N . Other properties follow directly.

4.3 Computing the Decomposition

We now define the concept of T-decomposition (tree decomposition) of a network.

Definition 2. A T-decomposition of a network N is an ordered set of pairs D =
{(Ai, Ji)}1≤i≤m, where Ai and Ji are a maximal clade and its connection, respec-
tively, in Ni (Ni is obtained by removing the subgraphs Ai−1 and Ji−1 from Ni−1,
except for the leaves of Ji−1, i.e., the tree nodes, and applying forced contraction oper-
ations to the resultant graph; for the base case, N1 = N ); m is the cardinality of the
decomposition.

Figure 2(b) shows a T-decomposition of the network in Figure 2(a). Before comput-
ing a T-decomposition of a network, the network has to be preprocessed as described in
Section 4.1.

Definition 2 leads to an algorithm naturally. To compute Ai in Ni, we find a max-
imal clade, which is rooted at the tree node immediately below a lowest network node
(based on Lemma 1). To compute Ji, we use Lemma 2: reverse the orientation of all
edges in Ni, do a depth-first search starting from the root of Ai until tree nodes are
encountered. Ji is the search tree together with the tree nodes immediately above (and
edges connecting them to Ji). This algorithm can be achieved in O(|Nt(N)||V (N)|)
time. To find (Ai, Ji) in Ni, we first find a lowest network node v. To find v, we rank
the network nodes (a node has a lower rank if it is closer to the root) using topolog-
ical sort (O(|V (N)| + |E(N)|) running time). We keep a doubly-linked list to allow
constant running time update whenever a network node is deleted from the network,
so finding a lowest network node can be achieved at no extra cost. The maximal clade
Ai is the clade rooted at the node immediately below v. To find the connection Ji, we
start from v and do a depth-first search with all edges in Ni reversed, and stop when-
ever a tree node is encountered. We then remove Ai and Ji from Ni, apply forced
contraction to all redundant nodes encountered in the DFS step for finding Ji. Notice
that in the two steps for finding Ai and Ji, we visit each edge at most once in com-
ponent Ai and Ji. These edges are removed from Ni, and the tree nodes in Ji are
suppressed in Ni (which takes constant time per node). The overall running time is thus
O(m(|V (N)|+ |E(N)|)) = O(|Nt(N)||V (N)|).

We now show some properties of the T-decomposition.

Proposition 4. Let D = {(Ai, Ji)}1≤i≤m be a T-decomposition of a network N .

1. Nm is a phylogenetic tree.
2. Each edge in N belongs to exactly one component in the decomposition.
3. Each network node belongs to exactly one connection in the decomposition.
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Fig. 2. (a) A phylogenetic network N . (b) A T-decomposition D of N . (c) The dependency
digraph KN,D .
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4. {L(Ai)}1≤i≤m, where L(Ai) denotes the leaf set of Ai, forms a partition of L(N).
5. If N is binary, then Ni is binary for all 1 ≤ i ≤ m.

Proof.

1. By definition Nm does not have network nodes.
2. Observe that by the algorithm, E(Ni+1), E(Ai), E(Ji) and the edge connecting

Ai and Ji, form a partition of E(Ni), 1 ≤ i ≤ m− 1.
3. At each step of the decomposition algorithm, we remove all nodes in the computed

connection; Nm does not have network nodes.
4. First notice that L(Ai) is a subset of L(Ni). Assume L(Ni) − L(N) �= ∅. Then

there exists a node v with outdegree 0 in L(Ni) but not in L(N), which means
either v ∈ Tr(N) or v ∈ Nt(N). If v ∈ Nt(N) then all nodes immediately
above v except one are in Ai or Ji, which is not possible since v cannot be lower
than the lowest network node determining Ai. If v ∈ Tr(N), then v ∈ L(Ji),
and at least two nodes in Ji are immediately below v, contradicting the fact that
N is SH-loop free. Therefore, L(Ai) ⊆ L(Ni) ⊆ L(N). Since Ai is nonempty, it
has a lowest node, which must be a leaf in L(Ni). Finally, notice that L(Ni+1) =
L(Ni)− L(Ai), 1 ≤ i ≤ m− 1.

5. Straightforward.

Let (u, v) be a terminal edge (i.e., and edge incident with a leaf) that belongs to con-
nection Ji; v is a tree node in N . If N is binary, then for the three edges incident to
v, two belong to the same component, because v is suppressed in the i’th step in the
decomposition algorithm. We define ι(u, v) to be the index of this component. It is
straightforward to show that ι(u, v) > i.

Finally, we show that exactly one terminal edge from each component in a T-
decomposition is used to induce a tree T .

Lemma 3. If T is a tree induced by a network N , and D is a T-decomposition of N ,
then exactly one terminal edge from each connection in D is used to induce that tree.

Proof. Assume the two terminal edges e1 = (x1, y1) and e2 = (x2, y2) from connec-
tion Ji are needed to induce tree T . Further, assume vi is the root of Ai, and Si is the
leaf set of Ai. Assume, as well, that ui is the network node such that (ui, vi) is an edge
in N . Notice that each of the two edges e1 and e2 were either a single edge or a path of
edges in N .

Exactly one of the two edges, say e1, reaches Si in T , whereas the other edge, e2,
reaches a set S′ of leaves, where Si ∩ S′ = ∅; otherwise, the underlying undirected
graph of T contains a cycle – a contradiction.

It follows that the path p from x2 to ui contains a node z, dividing p into two paths
p1 (from x2 to z) and p2 (from z to ui), and such that there is a terminal edge (z, w) in
some connection Jj , i �= j, where the set S′ of leaves is under w. The node w must be
a network node.

Now consider all possible nodes on the path p2 (between node z and node ui, exclu-
sive). If there were no such nodes, and since ui is a network node, it follows that node
z has two network node children (w and ui) – a contradiction to the assumption that N
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does not have a tree node whose two children network nodes (notice that node z cannot
be a network node, since by definition, a network node has outdegree 1).

Now, assume there were nodes on the path p2 from z to ui, and let s be such a
node. If s were a tree node, then there exists at least one leaf t in N that is reachable
from s through paths that do not contain any network nodes (otherwise, the subnetwork
rooted at s contains a tree node whose two children are also network nodes, which
is a contradiction). In this case, the edges on the path from x2 to s cannot be in the
connection Ji (those edges would be in maximal clade Am) – a contradiction to the
assumption that edge e2 is a terminal edge in connection Ji. Therefore, all nodes on the
path p2 from z to ui are network nodes, and hence tree node z has two children that are
network nodes – a contradiction.

Therefore, exactly one terminal edge from each connection is used to induce a tree
T in a network N .

4.4 Dependency Graphs

Given a network N and its T-decomposition D, we define the dependency digraph
KN,D to facilitate our algorithm design.

Definition 3. Given a network N and its T-decomposition D = {(Ai, Ji)}1≤i≤m, the
dependency graph is a directed multigraph KN,D, where node vi in KN,D corresponds
to the pair (Ai, Ji) in D, and edge (vi, vj) (i > j) in KN,D corresponds to a terminal
edge connecting Jj and Ji in N .

Figure 2(c) shows a dependency graph of the network and T-decomposition given
in Figures 2(a) and 2(b). In other words, KN,D is the graph resulting from replacing
each component (Ai, Ji) in D by a single node vi, and hence, KN,D is necessarily con-
nected. If KN,D had a cycle, then N would be cyclic. Therefore, we have the following
result.

Proposition 5. The dependency graph KN,D is connected and acyclic. Moreover,
(vi, vj) is an edge in KN,D only if i > j.

At the end of the decomposition process, we keep a matrix that shows which component
each edge belongs to. So querying which component an edge (u, v) belongs to, as well
as computing the value of ι(u, v), take O(1) time. Thus, computing the dependency
graph KN,D takes O(m|E(N)|) = O(|Nt(N)||V (N)|) time. Further, in KN,D, we
keep track of the correspondence between edges of N and edges of KN,D.

5 Reduced Inheritance Profiles and the Cluster Lemma

Given a T-decomposition D of cardinality m, a reduced inheritance profile is a set of
size m that contains exactly one terminal edge per connection in the decomposition.
We only keep the terminal edges because all inheritance profiles having the same set of
terminal edges necessarily induce the same tree. A reduced inheritance profile extends
into an inheritance profile in a straightforward manner, as no edges in the reduced in-
heritance profile are incident with the same network node. We say that a reduced inheri-
tance profile is valid if it induces a tree. The following results show the correspondence
between inheritance profiles and reduced inheritance profiles.
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Proposition 6. Let D be a T-decomposition of a network N . Then,

1. For each valid reduced inheritance profile IP there exists a valid inheritance profile
IP ′ that contains IP and induces the same tree.

2. For each valid inheritance profile IP ′ there exists a unique valid reduced inheri-
tance profile IP that induces the same tree.

Proof.

1. To compute the inheritance profile IP ′, for each connection Ji we take the unique
path from the terminal edge ei to the root of Ji; for each network node vi in Ji,
we choose the edge on the path as the value of xi in the inheritance profile. For
other nodes we make choices arbitrarily. Since no leaf can be reached from the root
through nodes not on the path, choosing different edges incident with these nodes
in the profile do not affect the tree topology.

2. Given a valid inheritance profile IP ′, for each connection J in the D there is exactly
one path connecting a terminal edge in J and the root of J . We retain this edge and
drop all other terminal edges in J ∩ IP ′. We obtain IP by repeating the same
process for all connections.

The dependency graph can be seen as a compact representation, mainly for reduced
inheritance profiles.

Lemma 4. Let D be a T-decomposition of a network N , KN,D be the dependency
graph, and IP be a valid reduced inheritance profile. Then, KN,D, restricted to the
edges in IP , forms a tree.

We are now in position to show the correlation between clusters and a T-decomposition
of a network – a result that forms the basis for our algorithms.

Lemma 5. (Cluster Lemma) Let D = {(Ai, Ji)}1≤i≤m be a T-decomposition of a
network N . Each cluster C induced by N can be written as C = ∪jCj , where each Cj

is an element of {L(Ai) : 1 ≤ i ≤ m}, except for at most one of the Cj ’s, which may
be a proper subset of an element of {L(Ai) : 1 ≤ i ≤ m}.

Proof. The lemma is trivially true for |C| = 1. Assume |C| > 1, and let T be a phylo-
genetic tree that contains C. Let IP be a reduced inheritance profile that induces T in
N . Construct the tree T ′ in the dependency graph according to Lemma 4. Let v in N
be a lowest common ancestor of all leaves in C. Node v must be a tree node (if it were
a network node, then the node below v would also be a common ancestor, contradict-
ing the fact that v is a lowest common ancestor). Let Ai1 , Ai2 , . . . , Aik

be k maximal
clades in D and such that each of them has nonempty intersection with C. Let eij be
the terminal edge in Jij that is an element of IP . There are two cases: (1) v is in a
maximal clade Al but not in any connection in D. Let L(v) be the cluster in Al below
v; or (2) v is in a connection Jq in D. Then there is a terminal edge (u, v) ∈ Jq . Let
l = ι(u, v), and let L(v) be the cluster in Al below v. In both cases, L(v) is nonempty,
and if L(v) �= L(Al), then L(v) is the Cj that is a proper subset of an element of
{L(Ai) : 1 ≤ i ≤ m}. Furthermore, for any Aij , ij �= l, 1 ≤ j ≤ k, ij �= m, any path
from v to a leaf in L(Aij ) passes through eij by Lemma 6; thus, L(Aij ) ⊆ C. Any leaf
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in L(Aij ) \ L(Ax) can be reached from v through at least one terminal edge in IP , so
by Lemma 5, l = max{i1, . . . , ik}.

Corollary 1. Let D = {(Ai, Ji)}1≤i≤m be a T-decomposition of a network N , IP be
a reduced inheritance profile, and C be a cluster. Then, when restricted to the nodes
whose corresponding maximal clades have nonempty intersection with C and to the
edges in IP , the dependency graph KN,D forms a tree. Further, the root of that tree
has the highest index.

Proof. Using the collapsing argument in the proof of Lemma 4, and Proposition 5.

Corollary 1 gives an algorithm for computing the component that contains the node
which “determines” a cluster C: compute the corresponding subtree in the dependency
graph and return the component corresponding to the root. If one of the Cj’s in the Clus-
ter Lemma is a proper subset of an element in {L(Ai) : 1 ≤ i ≤ m}, the component
that contains that Cj must be the root, based on the proof of the Cluster Lemma.

6 Polynomial-Time Algorithms for the Decision Problems

6.1 Deciding the Network-Cluster Containment Problem

We are finally in a position to describe a polynomial-time algorithm for deciding the
Network-Cluster Containment Problem. The algorithm is given in Figure 3. Let D =
{Ai, Ji}1≤i≤m be a T-decomposition of a network N , and let C ⊂ L(N) be a cluster.
We define the set ψ(C) = {i : 1 ≤ i ≤ m and L(Ai) ⊆ C}. The basic idea is to
compute a set EC of edges that are incompatible with C, i.e., edges that cannot co-exist
with C in the same tree induced by N .

Algorithm TestCinN(N ,C)

1. Compute a T-decomposition D = ((A1, J1), . . . , (Am, Jm = ∅)).
2. Test if C can be decomposed into the following form:

S
i∈ψ(C) L(Ai)∪L′, where L′ =

∅ or L′ ⊂ L(Al) for some l. If not, return NO. If L′ = ∅ then let l = maxi∈ψ(C) i.
3. Partition V = V (KN,D) into two sets: VC = {vi|i ∈ ψ(C)} and VC = V − VC .

Compute the set EC = {eij = (vi, vj)|eij ∈ E(KN,D), vi ∈ VC , vj ∈ VC , j �= l}.
4. If L′ �= ∅, test if L′ is a cluster of Al. If not, return NO; otherwise:

(a) Let v′ be the root of the clade whose leaf set is L′.
(b) For each terminal edge (u, v) in Ai, for some i ∈ ψ(C) and ι(u, v) = l, (edge

(u, v) connects the i’th component to the l’th component), add (u, v) to EC if u is
not a descendant of v′ in Ni.

5. Remove all terminal edges in N and that correspond to edges in EC (and apply forced
contraction operations); let the result be NC . If NC is connected, return YES. Other-
wise, return NO.

Fig. 3. Algorithm TestCinN for deciding the NETWORK-CLUSTER CONTAINMENT PROBLEM
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Theorem 2. Algorithm TestCinN(N ,C) decides the Network-Cluster Containment
Problem in O(|V (N)|2) time.

Proof. We first show the correctness of the algorithm. Step 3 in the algorithm is well
defined: if (vi, vj) ∈ E(N) then i > j by Proposition 5.

Assume NC is connected. It is easy to show NC is still a network (note that we
only remove terminal edges). By Proposition 2, NC induces a tree T ′; note that N also
induces T ′. There exists a reduced inheritance profile IP that induces T ′ in NC . Let e
be the terminal edge in IP ∩E(Jl). We now show T ′ contains C. For any terminal edge
e′, assume it is from component i. Assume i ∈ ψ(C). If e′ ∈ IP , then e′ is below e in
T ′, otherwise e′ is in EC . So the cluster below e in T contains each L(Ai), i ∈ ψ(C).
Now assume i �∈ ψ(C) and i �= l. If e′ ∈ IP , then ι(e′) /∈ ψ(C) ∪ {l}. Therefore⋃

i∈ψ(C) L(Ai) ⊆ C, and for each i �∈ ψ(C)∪ {l}, L(Ai)∩C = ∅. Finally, if L′ is not
empty, notice that for any terminal edge e′ from component i, i ∈ ψ(C), if e′ ∈ IP ,
then e′ is lower than v′ in T ′. Therefore the cluster determined by v′ in T ′ is exactly⋃

i∈ψ(C) L(Ai) ∪ L′.
Now, assume N induces tree T that contains cluster C; we show that NC is con-

nected. Let G = KN,D be the dependency graph, and let GC be the graph obtained
by removing edges in EC from KN,D. Let IP be a reduced inheritance profile that
induces T . If none of the edges in T is in EC then GC (and hence NC) is connected.
To see this is true, assume otherwise; then there exists (u, v) ∈ IP ∩ EC . Either (u, v)
is an edge in step 3 or step 4(b). The first case contradicts Corollary 1, since the edge
connects some vertex vi, i ∈ ψ in GC to a vertex vj above vl. In the second case,
the cluster determined by u in Al properly contains L′. If (u, v) ∈ Ji (in which case
L(Ai) ⊆ C), then for any vertex below u in T ′, its corresponding cluster does not
contain L(Ai).

We now analyze the running time of the algorithm. (Recall that N is binary.) Step 1
takes O(|Nt(N)||V (N)|) time. Steps 2 and 3 take O(|L(N)|) time if we keep track of
which component each leaf in L(N) belongs to, when we compute D. In step 4, first no-
tice the number of terminal edges is bounded by 2|Nt(N)|; for each terminal edge, test-
ing its membership in EC takes constant time. In Step 5, testing if L′ is a cluster in Ai

takes O(|L(Ai)|) = O(|L(N)|) time by doing a depth-first search; we can also find v in
5(a) at the same time. Testing for each (u, v) if it should be added to EC takes constant
time, and there are O(|Nt(N)|) of them. Finally, in Step 6, removing EC from N takes
O(|EC |) = O(|Nt(N)|) time; testing the connectedness of NC can be achieved by a
depth-first search. The overall running time is O(|Nt(N)||V (N)|)=O(|V (N)|2). If the
T-decomposition is given, the running time is O(|V (N)|+ |E(N)|) = O(|V (N)|).

Based on the proof of Theorem 2, we have the following result.

Corollary 2. Given any network N , a phylogenetic tree T , and a cluster C in T , N
induces T if and only if NC induces T .

Proof. Let IP be an inheritance profile that induces T . Notice that no edge of IP is in
EC . Since IP induces T in N , it also induces T in NC .
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6.2 Deciding the Network-Tree Containment Problem

Using algorithm TestCinN(N ,C), Figure 4 describes our polynomial-time algorithm for
deciding the Network-Tree Containment Problem.

Algorithm TestTinN(N ,T )

1. Compute a T-decomposition D = ((A1, J1), . . . , (Am, Jm = ∅)).
2. For each nontrivial cluster C in T (C �= L(N) and |C| > 1), call TestCinN(N ,C);

update N by removing EC from N .
3. If N is connected, return YES; otherwise, return NO.

Fig. 4. Algorithm TestTinN for deciding the NETWORK-TREE CONTAINMENT PROBLEM

Theorem 3. Algorithm TestTinN(N ,T ) decides the Network-Tree Containment Prob-
lem in O(|V (N)||L(N)|) time.

Proof. We denote by N ′ the network obtained at the end of Step 2. We want to show
that N induces T if and only if N ′ is connected. By Corollary 2, after each iteration in
Step 2 of the algorithm, the new N still induces T ; so N ′ is connected.

Assume N ′ is connected. Then N ′ induces a tree T ′. Let IP be an inheritance
profile in N ′ that induces T ′. It suffices to show T ′ = T since N ′ is a subnetwork of
N . Now consider any nontrivial cluster C in T . C can be decomposed using the Cluster
Lemma. Let l = maxψ(C), and let e = P ∩ E(Jl). Since we call TestCinN() with C
as the input cluster, every leaf in C in T ′ is below e. If L′ in the TestCinN algorithm
is empty, the cluster below e in T ′ is C. If L′ is not empty, L′ is a cluster in Al; in
this case let v′ be the lowest common ancestor in L′. The cluster in T ′ determined
by v′ is C.

We now analyze the running time of the algorithm. (Recall that N is binary.) We
only need to compute T-decomposition once, which takes O(|Nt(N)||V (N)|) time.
Each iteration in Step 2 takes O(|V (N)|) time, and the number of clusters in T is
O(|L(N)|). The final step takes O(|V (N)|+ |E(N)|) = O(|V (N)|) time. The overall
time is therefore O(|V (N)|2).

7 Conclusion and Future work

Phylogenetic networks are the appropriate model for evolutionary histories in the pres-
ence of reticulation events. Very little is known about their combinatorial properties, and
many problems are still open in this domain. In this paper, we presented polynomial-
time algorithms for two major problems, namely (1) deciding whether a tree is induced
by a network, and (2) deciding whether a cluster is induced by a network. Those two
algorithms are based on a novel network decomposition that we introduced. Directions
for future research include enumerating the numbers of trees and clusters induced by a
network, efficient techniques for network space traversal, and accurate reconstruction
of networks from sets of clusters and trees.
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Abstract. The problem of haplotype inference under the Mendelian law
of inheritance on pedigree genotype data is studied. The minimum re-
combination principle states that genetic recombinations are rare and
haplotypes with fewer recombinations are more likely to exist. Given
genotype data on a pedigree, the problem of Minimum Recombination
Haplotype Inference (MRHI) is to find a set of haplotype configurations
consistent with the genotype data having the minimum number of recom-
binations. In this paper, we focus on a variation of the MRHI problem
that gives more realistic solutions, namely the k-MRHI problem, which
has the additional constraint that the number of recombinations in each
parent-offspring pair is at most k. Although the k-MRHI problem is NP-
hard even for k = 1, the k-MRHI problem with k > 1 can be solved
efficiently by dynamic programming in O(nm3k+1

0 2m0) time by adopting
an approach similar to the one used by Doi, Li and Jiang [4] on pedigrees
with n nodes and at most m0 heterozygous loci in each node. In particu-
lar, the 1-MRHI problem can be solved in O(nm4

02
m0 ) time. We propose

an O(n2m0) algorithm to find a node as the root of the pedigree tree so as
to further reduce the time complexity to O(m0min(tR)), where tR is the
number of feasible haplotype configuration combinations in all trios in
the pedigree tree when R is the root. If the pedigree has few generations,
the 1-MRHI problem can be solved in O(min{nm4

02
m0 , nml+1

0 2μR+l})
time, where μR is the number of heterozygous loci in the root, and l
is the maximum path length from the root to the leaves in the pedi-
gree tree. Experiments on both real and simulated data confirm the
out-performance of our algorithm when compared with other popular
algorithms. In most real cases, our algorithm gives the same haplotyp-
ing results but runs much faster. In some real cases, other algorithms
give an answer which has the least number of recombinations, while our
algorithm gives a more credible solution and runs faster.

1 Introduction

The modeling of human genetic variation is critical to the understanding of the
genetic basis for complex diseases. Single nucleotide polymorphisms (SNPs [13])

C. Priami, A. Zelikovsky (Eds.): Trans. on Comput. Syst. Biol. II, LNBI 3680, pp. 100–112, 2005.
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are the most frequent form of this variation. The Human Genome Project and
other large-scale efforts have identified millions of SNP markers that can be used
in genetic studies. Although each marker can be analyzed independently, it is
much more informative to analyze them in groups. Therefore, it is useful to an-
alyze haplotypes (haploid genotypes), which are sequences of linked markers on
a single chromosome. In diploid organisms, such as humans, chromosomes come
in pairs, and experiments often yield genotype information, which blend haplo-
type information for chromosome pairs. There is growing evidence that, in order
to better characterize the role of a candidate gene, full haplotype information
should be exploited instead of using only genotype information. Unfortunately,
it is both time-consuming and expensive to derive haplotype information experi-
mentally. This explains the increasing interest in inferring haplotype information,
or haplotyping, computationally [2][6].

Input genotype data can be with or without any other pedigree information.
Haplotyping pedigree data is believed to be more reliable than haplotyping popu-
lation data for unrelated individuals: the constraint provided by parents-offspring
relationships in a pedigree could force one to settle on a unique haplotype con-
figuration as being most probable.

Genetic research shows that recombinations are rare in human data [5]. The
genomic DNA can be partitioned into long blocks such that recombinations
within each block are rare or even nonexistent. Thus it is believed that haplo-
type configurations with fewer recombinations should be preferred in haplotype
inference [11][12].

The Minimum-Recombination Haplotype Inference (MRHI ) problem, which
is NP-hard [4], is to find a haplotype configuration with minimum number of
recombinations for a given pedigree genotype data. Various algorithms have been
presented for the MRHI problem [8][7][12][15]. In some cases, however, the MRHI
model might yield unrealistic results in which a few parent-offspring pairs have
many recombinations while others have no or few recombinations. We present a
more realistic problem, called the k-MRHI problem which basically is the MRHI
problem, but with an additional constraint that the number of recombinations
in each parent-offspring pair is bounded by a constant k. The k-MRHI problem
is NP-hard even for k = 1.

The k-MRHI problem can be solved by a dynamic programming (DP) algo-
rithm which is very similar to the algorithm by Doi, Li and Jiang [4]. By avoiding
studying all 23m0 haplotype configurations in each parents-offspring trio, our al-
gorithm takes O(nm4

02
m0) time when k = 1, instead of the O(nm023m0) time

needed by [4] for the MRHI problem on pedigrees with n nodes and at most m0

heterozygous loci in each node. Note that not all nodes have m0 heterozygous
loci, and the number of feasible haplotype configurations at a node is limited by
the number of feasible haplotype configurations of its neighbors, and thus the
number of possible haplotype configurations at a node can be much less than
2m0 . This observation leads to the idea of choosing different nodes in the pedi-
gree as the root of the tree in speeding up the algorithm. The main contributions
of this paper are: (1) to define a more realistic problem for haplotype inference
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(k-MRHI), (2) to give a more efficient and practical DP algorithm for the haplo-
type inference problem with improved time complexities, and (3) to present an
efficient algorithm to find the root in the pedigree for better performance in the
DP algorithm.

2 Preliminaries

Haplotypes and genotypes consist of linked genetic markers which are small
segments of DNA with some specific features. The physical position of a marker
on a chromosome is called a locus and its state is called an allele. Without loss
of generality, the two alleles of a biallelic (2-state) SNP can be denoted by ‘0’
and ‘1’, and a haplotype h with m loci is presented as a string of length m over
{0, 1}m, and a genotype g as a string over {0, 1, 2}m. Haplotype pair 〈h1, h2〉 is
compatible with a genotype g if (a) the two alleles of h1 and h2 are the same
at the same locus, for example ‘0’ (respectively ‘1’), then the corresponding
locus of g should also be ‘0’ (respectively ‘1’), which denotes a homozygous site;
otherwise, (b) the two alleles of h1 and h2 are different, then the corresponding
site of g should be ‘2’, which denotes a heterozygous site.
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Fig. 1. The pictorial representation and graph representation of a pedigree

A pedigree is a fundamental structure used in genetics. Figure 1(a) shows
the pictorial representation (used by the biologists) of a pedigree with 13 nodes.
A square represents a male node, a circle represents a female node, and a black
dot represents a mating node. The subgraph in the dashed square is a typical
nuclear family, which contains a father (node 1), a mother (node 2) and two
children (nodes 4 and 5). The children are placed under their parents. Nodes 1,
2 and 4 consist a parents-offspring trio, nodes 1 and 4, nodes 1 and 5, nodes 2
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and 4, nodes 2 and 5 are parent-offspring pairs. We define a pedigree formally
as in [4].

Defintion 1[4]. A pedigree is a weakly connected directed acyclic graph P =
(V, E), where V = M ∪ F ∪N , with M stands for the male nodes, F the female
nodes, N the mating nodes, and E = {(u, v)} with u ∈ M ∪ F and v ∈ N ,
alternatively u ∈ N and v ∈M ∪ F .

Figure 1(b) shows the graph representation of the pedigree given in Figure
1(a). A sub-graph containing the father, the mother, and their children is a
nuclear family. A nuclear family can also be represented by a mating node which
connects them together. A parents-offspring trio, or just trio, consists of two
parents and one of their children; and a parent-offspring pair (PO-pair) refers
to a father and his child or a mother and her child. In this paper, we assume
that the pedigree never forms a cycle if the directions of edges are ignored (no
mating-loop).

Each individual node in a pedigree is associated with its genotype. In the
absence of genetic mutation, at each locus, the child must inherit one allele from
its father and the other from its mother. This is known as the Mendelian law of
inheritance. Usually, one haplotype of a child is inherited as a whole from one
of the two haplotypes of a parent. However, recombinations may occur, where
the two haplotypes of a parent get shuffled due to a crossover of a chromosome
and one of the shuffled copies (recombinant) is passed on to the child. However,
genetic research shows that recombinations are rare in human genetics. Thus we
are interested in finding the haplotype configurations such that the total number
of recombinations in the whole pedigree is minimized.

Defintion 2[12]. Minimum Recombinant Haplotype Inference (MRHI)
Problem: Given a pedigree graph P, each individual node of P associates with
a genotype. Find a haplotype configuration for the pedigree that each haplotype
pair at each node is an explanation of its corresponding genoytype and the total
number of recombinations is minimized.
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Fig. 2. Two different solutions for a pedigree of a nuclear family

Figure 2(a) shows a pedigree of a nuclear family containing a father F , a
mother M and 2 children C1, C2. Figure 2(b) gives a solution with no recom-
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bination in trio (F, M, C1) and 2 recombinations in trio (F, M, C2). Figure 2(c)
gives another solution, which also has 2 recombinations in total, but at most
one recombination in each trio, i.e. at most one recombination in each PO-pair.
As genetic studies show that recombinations are rare to have 2 recombinations
within one PO-pair, e.g., there are 13% single recombinations versus 0.84% dou-
ble recombinations in the Drosophila autosomal genes [5], Figure 2(c) should be
a more credible solution than Figure 2(b) for the haplotype inference problem.

Defintion 3 . k-Recombination Haplotype Inference (k-MRHI) Prob-
lem: Given a pedigree graph P with each individual node associated with a geno-
type, find a haplotype configuration that is compatible with the genotypes at all
nodes having the minimum number of recombinations and no more than k re-
combinations in each PO-pair.

3 A Dynamic Programming Algorithm for k-MRHI

3.1 The 1-MRHI Problem (k = 1)

In [4], Doi et al. gives a proof for the NP-hardness of the MRHI problem by a
reduction from MAX CUT. In their construction, the number of recombinations
within each PO-pair is limited to 1. This trivially implies that the k-MRHI
problem, even for k = 1, is also NP-hard.

However, in most cases, we can find a feasible solution for a k-MRHI instance
with k < 2. As we have mentioned before, more than 1 recombination within
a PO-pair is very unlikely in reality. Therefore, we shall focus on the 1-MRHI
problem first and generalize to the k-MRHI problem later.
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3 9 13 7 8 
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Fig. 3. The searching tree of the pedigree in Figure 1

A locus-based dynamic programming (DP) algorithm for the k-MRHI prob-
lem was presented in [4], with a time complexity of O(nm023m0), where m0 is
the maximum number of heterozygous loci in the genotype at each node of a
loopless pedigree. We adopt a similar DP approach to solve the 1-MRHI problem
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by (1) assigning an arbitrary node R in the pedigree as the root (an example is
given in Figure 3, which shows a rooted tree at node 5 for the pedigree in Figure
1); (2) recursively finding num[R][s], the minimum number of recombinations
required for all feasible haplotype configurations s of R; and (3) selecting the
haplotype with the minimum number of recombinations as the solution.

Let num[r][s] denote the minimum number of recombinations required in
the sub-tree rooted at r with the haplotype configuration s under the constraint
that there is at most 1 recombination in each PO-pair of the sub-tree. If r has
multiple mating nodes as its tree sons, we compute each mating node separately.
Each child mating node of r defines a unique nuclear family, which may contain r
as a parent or a child and the computation of num[r][s] is performed recursively
in that nuclear family.

Suppose that the nuclear family consists of father F , mother M and children
C1, · · · , Cd. If r is a leaf node, num[r][s] = 0 for any of haplotype configuration
s; else, if r is M (or F , respectively) with haplotype configuration s, then:

num[r][s] = min
p

(num[F ][p] +
d∑

i=1

min
ci

(num[Ci][ci] + numtrio(p, s, ci))) (1)

where p denotes the haplotype configuration at node F and ci the haplotype
configuration at Ci, one of the d children in this nuclear family. numtrio (p, s, ci)
returns the minimum number of recombinations required for a trio consisting of
F , M , and Ci with the haplotype configurations p, s and ci respectively, under
the constraint that no PO-pair can have more than one recombination. If there
does not have any feasible solution, then numtrio (p, s, ci) will return ∞, which
indicates “no solution”.

Similarly, if r is Cj with haplotype configuration s, then we have:

num[r][s] = min
p,q

(numtrio[p, q, s] + num[F ][p] + num[M ][q]

+
d∑

i=1,i�=j

min
ci

(num[Ci][ci]+numtrio(p, q, ci))) where r = Cj (2)

where p, q and ci are defined as before for haplotype configurations at F , M and
Ci respectively.

Note that the above algorithm is the same as that presented in [4], and thus
would have the same time complexity. However, a reduction in time complexity
is possible from an important observation: it is not necessary to consider all
combinations of haplotype configurations in each trio, which number O(23m0) in
total, because many combinations of haplotype configurations will be infeasible,
i.e. will not have at most one recombination per PO-pair.

For example, assume the genotype of F is (2, 2, · · · , 2) of length m0 and with
haplotype configuration s = 〈hs1, hs2〉 and hc1 in the haplotype c = 〈hc1, hc2〉
of Ci is inherited from s with no more than 1 recombination. There are m0 + 1
ways of forming hc1 by inheriting its first w alleles from the first w alleles in hs1

and the remaining (m0 − w) alleles from hs2 with 0 ≤ w ≤ m0. Similarly, there
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are another m0 + 1 ways of forming hc1 from the first w alleles in hs2 and the
remaining (m0−w) alleles from hs1 . Since there are double-counting in these two
cases when w = 0 and m0, the number of feasible haplotype configurations of c is
limited to 2m0, and the time complexity of the algorithm can be much reduced
if we limit the number of configurations needed to be searched for the optimal
result. More precisely, suppose r in Equation (1) is M (or F ), and s = 〈hs1, hs2〉,
let Ns be the set of feasible haplotype configurations c = 〈hc1, hc2〉 that can be
inherited by child Ci from s of r with no more than one recombination. Thus,
|Ns| ≤ 2m0. As hc2 is inherited from the haplotype configuration q = 〈hq1, hq2〉 of
F , let Nc be the set of feasible haplotype configurations of F which can produce
the haplotype configuration c in C with no more than one recombination. Let
N ′

s,Ci
= ∪c∈NsNc, which indicates the set of feasible haplotype configurations

at F which can go together with haplotype s at M to produce children Ci with
no more than one recombination in the father-child pair and in the mother-child
pair. Obviously, N ′

s,Ci
≤ 4m2

0.
As each haplotype configuration of F should be able to produce any of the

children C1, · · · , Cd, the set of feasible haplotype configurations in F is N ′
s =

∩iN
′
s,Ci

. Equation (1) can be rewritten as:

num[r][s] = min
p∈N ′

s

(num[F ][p] +
∑

i

min
ci∈Ns

(num[Ci][ci] + numtrio(p, s, ci))) (3)

As for Equation (2), if r is Cj and its haplotype configuration s = 〈hs1, hs2〉,
let Ns,F and Ns,M be the sets of feasible haplotype configurations in F and M ,
which can produce Cj with haplotype configuration s. As |Ns,F | ≤ 2m0 and
|Ns,M | ≤ 2m0, let Np,Ci(Nq,Ci) be the set of feasible haplotype configurations
on another child Ci with haplotype configuration p in F (q in M) and N ′′

p,q =
Np,Ci ∩ Nq,Ci be the set of feasible haplotype configurations for each child Ci

which can concurrently appear with the haplotype configuration s of child Cj .
Note that N ′′

p,q ≤ 2m0 and Equation (2) can be rewritten as:

num[r][s] = min
p∈Ns,F ,q∈Ns,M

(numtrio(p, q, s) + num[F ][p] + num[M ][q]

+
∑
i�=j

min
ci∈N ′′

p,q

(num[Ci][ci]+numtrio(p, q, ci))) where r = Cj (4)

Theorem 1. The above dynamic programming algorithm can solve the 1-MRHI
problem in O(nm4

02
m0) time and O(n2m0) space for pedigree with n nodes and

at most m0 heterozygous loci in each node.

Proof. The rooted tree can be constructed in O(n) time. As we have to consider
the 8m3

0 combinations in each trio for each haplotype configuration of a node
and we need O(m0) time to compute numtrio for each haplotype configuration
combination in a trio, it may take O(m4

02
m0) time to process each trio. There

are at most n parent-offspring trios in the pedigree, so the time complexity
is O(nm4

02
m0). Furthermore, we need to store the array num and pointers for

backtracking. The size of num is O(n2m0), so is the number of pointers. Thus
the space complexity is O(n2m0).
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3.2 The k-MRHI Problem

We have argued that in most cases, feasible solutions exist for 1-MRHI. However,
there are still some instances that require more recombinations within each PO-
pair. In almost all practical cases, there are at most 2 recombinations within
each PO-pair. In the following, we generalize the DP algorithm to the general
k-MRHI problem with some modifications.

We need to modify the definition of neighboring haplotype configurations set
from Ns to N

(k)
s : for each haplotype configuration c = 〈hc1, hc2〉 ∈ N

(k)
s , one of

〈hc1, hc2〉 is inherited from one of 〈hs1, hs2〉 with no more than k recombinations.
So we have |N (k)

s | = O(mk
0).

Similarly, we modify the definition of N
′(k)
s = ∩iN

′(k)
s,Ci

with N ′
s,Ci

to N
′(k)
s,Ci

in

Equation (3) and the definition of Ns,F and Ns,M to N
(k)
s,F and N

(k)
s,M , Np,Ci to

N
(k)
p,Ci

, and N ′′
p,q to N

′′(k)
p,q in Equation (4). Then we have:

Theorem 2. The time complexity of the DP algorithm solving the k-MRHI
problem is O(nm3k+1

0 2m0) for pedigree with n nodes and at most m0 heterozygous
loci in each node.

4 Root Selection for Better Performance

We have shown in Section 3 that in the 1-MRHI problem, the number of feasible
haplotype configuration combinations in each trio is no more than O(m2

02
m0).

However, in practice the feasible haplotype configuration combinations in each
trio may be much less than that because of the following reasons: (1) not all
nodes have m0 heterozygous loci; and (2) the number of feasible haplotype con-
figurations av of a node v is also bounded by the number of feasible haplotype
configurations avr of v’s neighbor vr, which can participate in the feasible hap-
lotype configuration combinations in a trio, i.e., av ≤ 2μvavr , where μv is the
number of heterozygous loci in v. Thus, different selections of a node in the
pedigree as the root for the DP algorithm will give different processing times.
The following we shall discuss an algorithm to find the best root based on the
estimated number of feasible haplotype configurations in each node.

Starting from any node R, as root and assuming αR be the number of feasible
haplotypes configurations of R, i.e., αR = 2μR , we will traverse the tree in
pre-order and, for each node v, evaluate the number of the feasible haplotype
configurations for its neighboring nodes.

If v has multiple mating nodes as v’s children, we compute each mating node
separately. Each mating node as v’s child defines a unique nuclear family, which
may contain v as a parent or a child. Suppose that the nuclear family consists
of father F , mother M and children C1, · · · , Ck.

If v is M (or F , respectively), αCi = min{2μCi , 2μCiαv} (i = 1, · · · , k)
and αF = mini{2μF , 2μF αCi}. If v is Ci, then αF = min{2μF , 2μF αv}, αM =
min{2μM , 2μMαv} and αCi = min{2μCi , 2μCiαF , 2μCiαM} (i = 1, · · · , k). Thus,
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the number of feasible haplotype configuration combinations ti in trio Ti can be
computed consequently, assuming an arbitrary node (node R) as the root of the
searching tree. The total number of feasible haplotype configuration combina-
tions in all trios in the pedigree is tR =

∑
i ti, which can be computed by a tree

traversal.

Theorem 3. Let m0 be the number of heterozygous loci and tR be the total
number of feasible haplotype configuration combinations for all trios in the pedi-
gree with node R as root. Then the node which gives min(tR) can be found in
O(n2m0) time and the 1-MRHI problem can be solved in O(m0 min(tR)) time.

Proof. We can evaluate tR for each node R in the pedigree in O(nm0) time and
choose the node with min(tR) as the root in O(n2m0) time. As the computation
of numtrio for each feasible haplotype configuration combination in each trio
takes O(m0) time, the 1-MRHI problem can be solved in O(m0 min(tR)) time
after selecting the best root for the DP algorithm.

4.1 Special Pedigrees with Few Generations

We notice that the diameters of the pedigree graphs in many practical instances
are usually small. For example, the 452 families in the CEPH database [1][3][10]
consist of only three generations, usually with four grandparents, two parents
and a number of children. Figure 4 shows a typical family (family 1413) with 21
members. The longest path starts from one of the grandparents from the father’s
side to one of the grandparents from the mother’s side and is of length 4 (not
counting the mating nodes). But if we start from any of the children, we can
reach any other node within 2 steps.

Suppose that the number of heterozygous loci in the chosen root R is μR, and
any other nodes can be reached within l steps from R. We shall enumerate all the
2μR feasible haplotype configurations of the root in the first step, and no more
than 2μR×2m0 feasible haplotype configurations for each of its neighboring nodes
in the second step, and so on. The number of feasible haplotype configurations
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Fig. 4. A typical family(family 1413) in the CEPH database



Minimum Parent-Offspring Recombination Haplotype Inference 109

is at most 2μR × (2m0)l at the most distant node. When μR � m0 and l is
relatively small, we will get an improvement in the time complexity:

Theorem 4. 1-MRHI can be solved in min{O(nm4
02m0), O(nml+1

0 2μR+l)} time
for pedigree with n nodes and at most m0 heterozygous loci in each node, where
l is the maximum path length from the root to the leaves and μR is the number
of heterozygous loci in root R.

Proof. We have to consider all combinations of feasible haplotype configurations
at nodes in each trio, which is at most 2μR × (2m0)l. We need O(m0) time to
compute numtrio for each haplotype configuration combination in each trio,
and there may be at most O(n) trios, the time complexity of the algorithm is
min{O(nm4

02m0), O(nml+1
0 2μR+l)}.

5 Experimental Results

We implemented the above DP algorithm in C++, and all experiments were
conducted on a Pentium IV PC with 1.7GHz CPU and 256MB RAM.

5.1 Real Data

We examined a real data set on Epsiodic Ataxia (EA) by Litt et al.[9] which
involves a family containing 29 people typed at 9 polymorphic markers on chro-
mosome 12p. Both the locus-based algorithm [4] and the 1-MRHI algorithm run
fast (t < 1 sec.) on this data set but the results are different. The locus-based
algorithm gives a feasible solution with 5 recombinations in total but with a
double recombination in one haplotype of member 100. The 1-MRHI algorithm,
however, finds a more credible solution that has 6 recombinations in total, but
with at most 1 recombination for each haplotype in the pedigree.

Another two real data sets are three generations families like those in the
CEPH database [1][3][10] ( ftp://genome.wi.mit.edu/distribution/mpg/hapmap/
hap struct/popA/ (Gabriel et al.)): family 1331 on chromosome 7a, and family
1346 on chromosome 2a. After removing the loci with missing alleles, family 1331
is a pedigree consisting of 8 members on 32 loci, and family 1346 is a pedigree
consisting of 8 members on 55 loci. Both the locus-based algorithm and the 1-
MRHI algorithm give the same answer for family 1331, but take 522.4s and 8.7s,
respectively. As for family 1346, the locus-based algorithm fails because of not
enough resources while the 1-MRHI algorithm finds out a solution in 31 minutes.

5.2 Simulated Data

We compare the performance of our algorithm, with the locus-based algorithm [4]
and PHASE [14], a widely used program based on Gibbs Sampling algorithm, the
running time t and the accuracy ratio ρ (in recovering the correct haplotypes).
We used three different tree pedigree structures in the experiment: (1) a tree
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with 13 nodes (Figure 1), (2) a tree with 29 nodes (Figure 8 in [7]), (3) a typical
family with 21 nodes from the CEPH database [1][3][10] (Figure 5).

For each pedigree, genotypes with 15 and 30 biallelic marker loci are con-
sidered. The two alleles at each locus of a founder are independently sampled
with a fixed frequency of 0.5. The recombination rate is set to r = 0, 0.1, 0.2
between generations, and we limit the number of recombinations to no more
than one in each PO-pair. For each combination of the above parameters, 100
sets of random genotype data are generated and the average performance of the
programs is computed, as shown in Table 1.

Table 1. Comparison of performances of different haplotyping programs on sim-

ulation data

m = 15 m = 30

locus-based[4] PHASE[14] 1-MRHI 1-MRHI

(n, r) t(sec.) ρ t(sec.) ρ t(sec.) ρ t(sec.) ρ

(13, 0.0) 255.7 1.00 688.2 .87 1.68 1.00 202.8 1.00
(29, 0.0) 576.3 1.00 1772.8 .91 12.33 1.00 839.6 1.00
(21, 0.0) 234.4 1.00 592.4 .95 1.02 1.00 44.0 1.00
(13, 0.1) 287.7 .93 972.3 .85 1.73 .91 241.1 .92
(29, 0.1) 542.8 .90 2210.2 .90 10.45 .90 1042.8 .94
(21, 0.1) 243.2 .91 1504.2 .93 0.52 .94 33.7 .96
(13, 0.2) 294.2 .85 1221.4 .85 3.17 .89 1032.4 .86
(29, 0.2) 613.5 .81 3022.2 .89 11.70 .84 916.1 .84
(21, 0.2) 244.1 .90 2106.7 .93 1.22 .95 47.4 .92

† Average performance is obtained from 100 independent executions of each
program and for each parameter setting. n stands for the number of nodes,
m for the number of marker loci, r for the recombination rate, t(sec.) for the
average running time, and ρ for the accuracy ratio.

‡ The locus-based algorithm cannot be applied to cases of m ≥ 30, due to the
space limitation. PHASE is also excluded for cases of m ≥ 30 because of the
time.

As we can see from the table, 1-MRHI runs quickest, and the locus-based
algorithm runs quicker than PHASE. Thus the 1-MRHI algorithm can be applied
to much larger instances than the locus-based algorithm and PHASE can (the
other two algorithms fail when m = 30).

In terms of the quality of solutions, all three algorithms can recover the
correct haplotype configurations with high probabilities. The accuracy ratio de-
creases with the increase in the number of recombinations, which is more obvious
for the locus-based algorithm and the 1-MRHI algorithm. Since we have limited
the number of recombinations within each PO-pair to no more than 1 in the
data, the locus-based algorithm, which often finds solutions with fewer recom-
binations than the actual haplotype configurations, performs worse than the
1-MRHI algorithm as expected.
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6 Concluding Remarks

1-MRHI brings an improvement on the running time of solving the general MRHI
problem, even though 1-MRHI and the general MRHI usually give the same solu-
tions as confirmed from the experiments. If the solutions are different, 1-MRHI
usually gives the more credible solutions. In some cases, if the total number
of recombinations for 1-MRHI solutions is much larger than the total number
of recombinations for 2-MRHI solutions, then it is plausible that the 2-MRHI
solution should be more credible. Our next goal is to find the most probable
haplotype configuration which can explain the genotypes in a pedigree when the
probabilities of single, double, triple recombinations are given.

Our algorithm for k-MRHI cannot deal with mating loops; nor can the locus-
based DP algorithm [4]. A member-based DP algorithm [4] can deal with pedi-
grees with mating loops, but may not be well-suited to solving the k-MRHI
problem because of the increase in time complexity. In practice, pedigree data
often contains missing alleles. It will be interesting to find an efficient algorithm
for k-MRHI on pedigrees with mating loop and genotypes with missing data.
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Abstract. By finding the corresponding shortest edit distance between two 
signed gene permutations, we can know the smallest number of insertions, 
deletions, and inversions required to change on string of genes into another, 
where insertion, deletion and inversion are the process of genome evolutions. 
However, it is NP-hard problem to compute the edit distance between two 
genomes. Marron et al proposed a polynomial-time approximation algorithm to 
compute (near) minimum edit distances under inversions, deletions, and 
unrestricted insertions. Our work is based on Marron’s et al algorithm, which 
carries out lots of comparisons and sorting to calculate the edit distance. These 
comparisons and sorting are extremely time-consuming, and they result in the 
decrease of the efficiency. We believe the efficiency of the algorithm can be 
improved by parallelizing. We parallelize their algorithm via OpenMP on Intel 
C++ compiler for Linux 7.1, and compare three levels of parallelism: coarse 
grain, fine grain and combination of both. The experiments are conducted for a 
varying number of threads and length of the gene sequences. The experimental 
results have shown that either coarse grain parallelism or fine grain parallelism 
alone does not improve the performance of the algorithm very much, however, 
the combination of both fine grain and coarse grain parallelism have improve 
the performance to a great extent. 

1   Introduction 

As the need for comparing genomes of different species has grown dramatically with 
the fast progress of the Human Genome Project, the evolution at the level of whole 
genomes has attracted more and more attentions from both biologists and computer 
scientists. They are especially interested in the scenarios in which the genome evolves 
through insertions, deletions, and movements of genes along its chromosomes.  

A gene is the fundamental physical and functional unit of heredity. Each 
chromosome can be represented by an ordering of signed genes. The gene orders can 
be rearranged via evolutionary events like inversions and transpositions. The 
motivation of studying the gene sequencing arises in molecular biology. The ability to 
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compare genomes of different species has grown considerably with the rapid 
advancement of Human Genome Project, genetic and DNA data on different species. 
One of the most effective methods of finding the similarity between genomes is to 
compare the order of appearance of identical genes in the two species. By finding the 
corresponding shortest edit distance between two signed gene permutations, we can 
know the smallest number of insertions, deletions, and inversions required to change 
one string of genes into another. However, it is very difficult to compute the edit 
distance between two genomes; for example, this problem is NP-hard for unsigned 
permutations even with equal gene content and only inversion allowed. 

Many researchers have proposed various algorithms on finding the minimum edit 
distances [3,4,5,6,10]. Most of these algorithms involve lots of comparisons and 
sorting while computing edit distances. Marron et al’s algorithm [2] is of particular 
interest for our implementation purposes. This algorithm handles duplications as well 
as insertions and presents an alternate framework for computing (near) minimal edit 
sequences involving insertions, deletions, and inversions. They produce a new 
canonical form in which the shortest edit sequences can be transformed into 
equivalent sequences of equal length in which all insertions are performed first, 
following by all inversions, and then by all deletions. 

Marron et al’s algorithm is implemented sequentially, which is not efficient in 
terms of computation time, because the algorithm carries out many comparisons and 
sorting. Parallelism can be employed in the time-consuming comparisons and sorting, 
thus increasing the efficiency of the algorithm. We have performed profiling on the 
whole algorithm and identified the functions that are utilizing maximum time. We 
parallelize the algorithm through OpenMP on Intel® C++ for Linux compiler 7.1. The 
Intel® Compiler provides optimization technology, threaded application support, 
features to take advantage of Hyper-Threading technology. At the same time it 
produces optimal performance for the applications [9]. OpenMP, the industry 
standard for portable multi-threaded application development, is powerful at fine 
grain (loop level) and large grain (function level) threading. The Intel C++ Compiler 
supports OpenMP API version 2.0 and performs code transformation for shared 
memory parallel programming [9]. 

The rest of this paper proceeds as follows. Section 2 provides preliminaries on the 
sequential algorithm by Marron et al. We illustrate the details of our parallel 
implementation in Section 3. The experimental results are analyzed in Section 4. 
Section 5 draws the conclusion and proposes future works. 

2   Preliminary Existing Algorithm 

Marron et al’s algorithm [2] is based on a new canonical form for edit sequences. 
They show that shortest edit sequences can be transformed into equivalent sequences 
of equal length in which all insertions are performed first, followed by all inversions, 
and then by all deletions. This canonical form allows taking advantage of El-
Mabrouk's exact algorithm for inversions and deletions, which can be extended by 
finding the best possible prefix of insertions, and producing an approximate solution 
with bounded error. 
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2.1   Terminology 

The edit sequence is denoted by Greek letter, . 
A string e1, e2, e3…en is contiguous (a clump) iff 

j, ej+1 = ej + 1. 
The parity of a pair of strings (si, sj) is 

sign (si) . sign (sj) 
The two adjacent substrings with parity in the subject are correctly oriented if they are 
adjacent with parity in the target. 

target = 1 2 3 4 5,      subject = -1 2 3 4 -5 
substrings (2) and (3 4) are correctly oriented; 
substrings (-1) and (2 3 4) are not correctly oriented. 

2.2   Canonical Form 

Marron et al [2] has proved some positive results about shortest edit sequences. These 
results will enable to obtain a “canonical form” into which any shortest edit sequence 
can always be transformed without losing optimality. Reindexing technique is used in 
manipulating the order in which operations appear since the order of operations in  
need not determine the effect of those operations. Marron et al has proved the 
following two theorms. 

Theorem 1: One two substrings become correctly oriented, they remain correctly 
oriented. 

Theorem 2: All insertions can be done before all inversions and deletions in a 
Minimum Edit Sequence. 

2.3   Sequences Cover 

A group of substrings from the target should be determined such that every element in 
the source appears in one of those substrings. The goal of the job is to cover all the 
non-deleted target elements with one from the subject. A minimal cover is one that 
uses fewest substrings of the subject. At each step, we try to cover the target from the 
left to as far as right as possible with contiguous subsequences of the subject. At last, 
this method produces a minimal cover by greedy. The cover bound is proved in 
theorem 3. 

Theorem 3: There exists a cover of at most 2| |+1 for a sequence of S. 

2.4   Algorithm Description 

El-Mabrouk’s approximation method can be applied now by assigning unique labels 
to all duplicates with the method of constructing a minimal cover. In spite of this, El-
Mabrouk’s method is used for deletions only, to minimize the error and to make the 
problem into more easily analyzed form, and later resulting solution is extended to 
handle the insertions. A new sequence Tir which denotes that all the inserted elements 
have been removed is obtained by deleting the elements from target sequence T that 
do not appear in S.  
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Theorem 4: Let  be the minimal edit sequence from S to T, using l insertions and m 
inversions. Let ' be the minimal edit sequence of just inversions and deletions from S 
to Tir. The extension " (extending ' through an initial sequence of insertions as just 
described) has at most l +m insertions. Proof. As in [2]. 

Therefore, if there are l insertions and m inversions in , then there are at most l + 
m  | | = n inserted substrings in T. Now we can summarize Marron et al ‘s Genomic 
Distances algorithm in the following three steps. 

 

 

3   Details of Parallel Implementation 

This section gives the details of the implementation steps carried out to parallelize the 
Marron et al’s genomic distances algorithm.  

3.1   Profiling 

Profiling is a good procedure to determine the most time-consuming parts of the code. 
By profiling the sequential code, we obtain a flat profile. Flat profile consists of the 
percentage of time used to complete the particular function, number of calls made for 
the function, self milli seconds per call and total milli seconds per call. From this flat 
profile, we can deduce which function uses greater percentage of time and further 
which function consumes more total milli seconds per call. The gprof utility provides 
a fast and easy way to do procedural-level profiling of the code. We use gprof and 
focus on the identification of such expensive functions with respect to time, and 
acknowledge the code to be parallelized. So that, these functions may utilize less time 
and eventually good speedup can be obtained. We compile the code using -pg option 
and run the code as usual. Then the code will produce an output file named gmon.out, 
which can be analyzed for further purposes. 

3.2   Porting the Code Between GNU 3.2 and Intel C++ Compiler 7.1 for Linux 

In order to parallelize the algorithm using OpenMP we need to compile the program 
on Intel C++ compiler because GNU 3.2 does not support OpenMP. For the reason 
that we are using different compilers, one may expect that each time when the code is 
ported between GNU 3.2 and Intel C++ 7.1 for Linux, there are problems and bugs, 
which are previously unknown in the code. 

We pursue the following steps in porting the code from GNU 3.2 to Intel C++ 
Compiler 7.1 for Linux. 

Step 1: Relocate insertions to obtain the canonical form of sequences; 
Step 2: Resolve duplicates by finding the minimum cover through 

greedy method; 
Step 3: Then run exact EI-Mabrouk algorithm on the inversions and 

deletions. 
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• Check all the options used to preprocess, compile, load, and execute the 
code on both the GNU 3.2 and Intel C++ compiler 7.1 architectures to 
make sure the same default behavior is being targeted. This involves 
checking the environment variables and paths.  

• Check the level of precision, e.g., how many bits are used in integer 
arithmetic, and how many bits are used for real and double precision 
arithmetic.   

• Check how string constants are handled.  
• Verify whether stack or static storage of variable values is used. If two 

different methods are being used, this can cause different initialization of 
variables within routines. 

• Check how variables are being initialized (or not initialized) during the 
building of the code.  

There are some significant porting issues encountered while porting program from 
GNU 3.2 to Intel C++ compiler 7.1. The header files in GNU 3.2 compiler are 
declared with extension .h as #include < stack.h > but in Intel C++ compiler it is 
declared without .h extension as #include <stack>.  

The initialization of the hash_map variables is much different in GNU compiler 
and Intel C++ compiler. In GNU, the hash_map is initialized with three parameters, 
while in Intel C++ compiler it does not accept three parameters in the initialization. 
Due to this, the code has to be changed to compile successfully on the Intel C++ 
Compiler without the third parameter. 

Following is the sample code for hash_map initializing in Intel C++ compiler 7.1. 

 

3.3   Parallel Implementation of Genomic Distances Algorithm 

Genomic Distances algorithm is parallelized by using OpenMP on Intel C++ compiler 
7.1 for Linux.  Parallelism is implemented by applying fine-grain parallelism, coarse-
grain parallelism and combination of both. OpenMP method makes use of fork-join 
technique. Master thread spawns team of threads as needed.  Parallelism in OpenMP 
program can be implemented by adding appropriate directives to change a sequential 

#include <hash_map> 
using namespace std;  
void removeDups (int* s1, int &ls1, int* s2, int &ls2) 
{  

 hash_map< int, int > beenseen1; 
 hash_map< int, int> doremap; 

     int i; for (i=0; i < ls1; i++) 
   {   

 if (beenseen1[abs(s1[i])])  
       doremap [abs(s1[i])] = 1; 

   }  
} 
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program into parallel program. We study how to add appropriate directives to the 
sequential code to inform OpenMP compiler to parallelize the program.  

In coarse-grain parallelism, each function is given attention to find the functional 
dependencies, which is needed for synchronization, and mutual exclusive sections. 
Then the independent functions are taken and parallelized using the parallel and 
section directive, which specifies that the enclosed section of code are to be divided 
among the threads in the team and execute them in parallel. The mutually exclusive 
sections are provided with critical section directive, which specifies a region of code 
that must be executed by only one thread at a time.  

In order to implement fine grain parallelism, first data dependency and critical 
sections within loops is checked to determine whether variables in nested loops 
should be declared as private or shared in OpenMP program after profiling and 
porting the program. The variables in the for loops are limited to individual threads, 
therefore they should be declared as private using private directive. Every thread has 
its own copy of these variables in parallel loops. A variable without the declaration is 
treated as shared variables by default. Second, the appropriate directive parallel for is 
added in front of loops to inform compilers to execute the code in parallel mode. All 
threads are scheduled dynamically with varying chunk sizes. 

To implement the combination of coarse-grain and fine-grain parallelism in the 
Genomic Distances algorithm, both the parallel section and parallel for directive are 
applied appropriately in the required regions. Special attention is paid to mutual 
exclusive section.  

4   Analysis of Experimental Results 

This section discusses the experimental environment and results obtained in implementation 
of Genomic Distances algorithm via OpenMP. The Algorithm is parallelized by using fine-
grain, coarse-grain and combination of both coarse and fine grain parallelism.  

4.1   Experimental Environment 

An Intel C++ compiler 7.1 is capable of Hyper-Threading technology and supports 
OpenMP. Thus, we test OpenMP performance via it. This compiler has advanced 
optimization techniques for the Intel processor. The machine used is the Dell 
poweredge 6600 server and it has four quad SMP CPU’s. Dell server is a powerful 
scalable parallel system. It is populated with four 1.9 GHz Xeon processors and a 
total of 4 GB of memory. It has 4 SCSI hard drives under Raid 5. The operating 
system is Red Hat Linux 8.0 3.2-7. Experiments are conducted by varying the number 
of threads (2, 4, 6, 8) and length of gene sequences (400, 800, 1000, 2500, 5000, 
10000). Speedup and program execution time for OpenMP are measured. Experiment 
results are verified and made sure that the identical gene sequences are utilized for 
sequential and parallel program.  

4.2   Coarse-Grain Parallelism 

As a first step to improve the efficiency of the Genomic Distance algorithm, we adopt 
OpenMP parallel sections construct for all the time-consuming functions. As the sections 
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directive allows performing the sequence of tasks in parallel and assigning each task to a 
different thread, each function is divided among the available team of threads; the number 
of threads is specified using OMP_NUM_THREAD(). Special attention is paid to the 
functional dependencies. Fig. 1 compares sequential timing with the coarse-grain 
parallelism timing with varying the number of threads and length of gene sequences.  

 

Fig. 1. Average execution time relative to the length of gene sequences under coarse-grain 
parallelism 

Here the sequential algorithm was the most expensive in terms of execution time. 
We will compare the speedup values among three cases; coarse-grain parallelism, 
fine-grain parallelism, and the combination of coarse-grain and fine-grain parallelism 
when the length of gene sequence is 10000, and the number of threads is 8. For 
coarse-grain parallelism, the speedup value is 1.32. Thus, we conclude by 
parallelizing the algorithm with the parallel section construct there is not much 
anticipated improvement. Since there is a lot of dependency in the code, as such 
coarse-grain parallelism by sections does not yield a great performance progress. 

4.3   Fine-Grain Parallelism 

Later, to improve the efficiency of the Genomic Distance algorithm, we use OpenMP 
parallel for construct for all the time-consuming loops in the program. As the for 
directive specifies that the iterations of the loop immediately following it must be 
executed in parallel by the team of threads, each for loop will divide the array used 
into chunks of the specified size dynamically, and the number of threads will work on 
each individual chunk. With varying sequence size, care is taken to make the chunk 
size equally distributable among the available threads. Fig. 2 shows the results 
obtained as a part of fine-grain parallelism. 

Here the sequential algorithm is the most consuming in terms of execution time. 
However, by parallelizing the algorithm with the parallel for construct there is a  
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Fig. 2. Average execution time relative to the length of gene sequences under fine-grain parallelism 

 

Fig. 3. Average execution time relative to the length of gene sequences under the combination 
of coarse-grain parallelism and fine-grain parallelism 

certain improvement.  For example, the speedup value is 5.91 when gene sequence 
length is 10000, and the number of treads is 8. This is a good improvement compared 
with only coarse-grain parallelism. 

4.4   The Combination of Coarse-Grain Parallelism and Fine-Grain Parallelism 

Finally, to get a more efficient Genomic Distance algorithm, we adopt both OpenMP 
fine-grain and coarse-grain parallelism by implementing both parallel for construct 
and parallel sections construct to all the time consuming loops and functions, which 
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are independent to each other in the program. Fig. 3 shows the results obtained as a 
part of both fine-grain and coarse-grain parallelism.  

As in the earlier cases, the figure shows that the sequential algorithm is the most 
consuming in terms of execution time. On the other hand, by parallelizing the 
algorithm with the parallel for and parallel sections construct there is a very good 
improvement. For example, the speedup is 7.36 at gene sequence length 10000 and 
eight threads, which has achieved a much better performance compared with only 
coarse-grain parallelism and only fine-grain parallelism. Table III gives the speedup 
values for combination of fine-grain and coarse-grain parallelism for further 
analysis. 

Table 1. Speedup values for combination of coarse-grain and fine-grain parallelism 

Number of Threads Len.of Gene Seq. 
2 4 6 8 

400 3.00 3.00 5.50 6.00 
800 2.09 2.27 3.83 5.75 

1000 2.07 2.9 4.13 4.83 
2500 2.56 5.5 6.48 6.53 
5000 2.18 5.07 6.73 7.10 
10000 2.00 3.93 6.12 7.36 

 

Fig. 4. Comparison of speedup among coarse-grain, fine-grain and combination of both coarse-
grain and fine-grain parallelism 

The table shows that with smaller gene sequence size the speedups increase slowly 
with increasing number of threads. But as sequence length increases, there is a precise 
improvement in the algorithm with maximum speedup in the case of eight threads. 
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For instance, the speedup value of eight threads is the double of the speedup value of 
two threads at the length of gene sequence 400. However, the speedup value of eight 
threads is the triple of that of two threads at the length of gene sequence 10000.  At 
small sequence size, thread creation takes some time, so there is not much of 
difference in speedup. But as the sequence gets larger, because of equal division of 
work, speedup is almost as good as (sequential time / number of threads) for a 
constant sequence size.  

Fig. 4 compares the speedup between all three cases when length of gene sequence 
is 10000. We can observe that the speedup obtained, when the program is 
implemented with both the fine-grain and coarse-grain parallelism is certainly the best 
compared to them individually.  

By observing all the above three cases, we notice that the combination of both fine-
grain and coarse-grain parallelism has improved the performance of the algorithm to a 
great extent. Because it implements both loop level parallelism, which takes care 
about all the time-consuming loops, and functional level parallelism, which handles 
the independent functions and execute them in parallel.    

5   Conclusion and Future Work 

The Marron et al’s Genomic Distances algorithm provides a polynomial-time 
approximation algorithm with bounded error to compute edit distances under 
inversions, deletions, and unrestricted insertions from the perfectly sorted sequence to 
any other. The algorithm consists of many comparisons and sorting, so it is extremely 
time-consuming. In order to improve the efficiency of the algorithm, we parallelize 
the algorithm using OpenMP. Furthermore, we study extensively the performance 
metrics for fine-grain and coarse-grain parallelism and both together.  

From our experimental results, we conclude that coarse grain parallelism is not 
effective for this algorithm since there is lot of functional dependencies, and many 
functions are not able to execute concurrently. There is improvement in performance 
when the algorithm is parallelized with fine grain parallelism, for all the time-
consuming for loops are made to run in parallel. When the algorithm is parallelized by 
the combination of both fine and coarse grain parallelism, there is very good 
improvement in the efficiency of the algorithm.    

In the future, we can obtain better performance of the Genomic Distances 
algorithm by using both MPI and OpenMP. MPI handles the larger-grained 
communications among multiprocessors, while the lighter-weight threads of OpenMP 
handle the processor interactions within each multiprocessor.  By adding MPI 
function calls to the OpenMP source program, the program can be transformed into a 
MPI/OpenMP program suitable for execution on a cluster of multiprocessors.  
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CSE Department, University of Connecticut,
371 Fairfield Rd., Unit 2155, Storrs, CT 06269-2155

{ion.mandoiu, claudia.prajescu, dragos.trinca}@uconn.edu

Abstract. In this paper we address two optimization problems arising
in the design of genomic assays based on universal tag arrays. First,
we address the universal array tag set design problem. For this prob-
lem, we extend previous formulations to incorporate antitag-to-antitag
hybridization constraints in addition to constraints on antitag-to-tag hy-
bridization specificity, establish a constructive upper bound on the max-
imum number of tags satisfying the extended constraints, and propose
a simple alphabetic tree search tag selection algorithm. Second, we give
methods for improving the multiplexing rate in large-scale genomic as-
says by combining primer selection with tag assignment. Experimental
results on simulated data show that this integrated optimization leads
to reductions of up to 50% in the number of required arrays.

1 Introduction

High throughput genomic technologies have revolutionized biomedical sciences,
and progress in this area continues at an accelerated pace in response to the
increasingly varied needs of biomedical research. Among emerging technologies,
one of the most promising is the use of universal tag arrays [4,7,9], which provide
unprecedented assay customization flexibility while maintaining a high degree of
multiplexing and low unit cost.

A universal tag array consists of a set of DNA tags, designed such that each
tag hybridizes strongly to its own antitag (Watson-Crick complement), but to
no other antitag [2]. Genomic assays based on universal arrays involve multiple
hybridization steps. A typical assay [3,5], used for Single Nucleotide Polymor-
phism (SNP) genotyping, works as follows. (1) A set of reporter oligonucleotide
probes is synthesized by ligating antitags to the 5′ end of primers complement-
ing the genomic sequence immediately preceding the SNP location in 3′-5′ order
on either the forward or reverse strands. (2) Reporter probes are hybridized in
solution with the genomic DNA under study. (3) Hybridization of the primer
part (3′ end) of a reporter probe is detected by a single-base extension reac-
tion using the polymerase enzyme and dideoxynucleotides fluorescently labeled
with 4 different dyes. (4) Reporter probes are separated from the template DNA
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and hybridized to the universal array. (5) Finally, fluorescence levels are used
to determine which primers have been extended and learn the identity of the
extending dideoxynucleotides.

In this paper we address two optimization problems arising in the design of
genomic assays based on the universal tag arrays. First, we address the univer-
sal array tag set design problem (Section 2). To enable the economies of scale
afforded by high-volume production of the arrays, tag sets must be designed
to work well for a wide range of assay types and experimental conditions. Ben
Dor et al. [2] have previously formalized the problem by imposing constraints
on antitag-to-tag hybridization specificity under a hybridization model based on
the classical 2-4 rule [10]. We extend the model in [2] to also prevent antitag-to-
antitag hybridization and the formation of antitag secondary structures, which
can significantly interfere with or disrupt correct assay functionality. Our results
on this problem include a constructive upper bound on the maximum number
of tags satisfying the extended constraints, as well as a simple alphabetic tree
search tag selection algorithm.

Second, we study methods for improving the multiplexing rate (defined as
the average number of reactions assayed per array) in large-scale genomic assays
involving multiple universal arrays. In general, it is not possible to assign all
tags to primers in an array experiment due to, e.g., unwanted primer-to-tag
hybridizations. An assay specific optimization that determines the multiplexing
rate (and hence the number of required arrays for a large assay) is the tag
assignment problem, whereby individual (anti)tags are assigned to each primer.
In Section 3 we observe that significant improvements in multiplexing rate can be
achieved by combining primer selection with tag assignment. For most universal
array applications there are multiple primers with the desired functionality; for
example in the SNP genotyping assay described above one can choose the primer
from either the forward or reverse strands. Since different primers hybridize to
different sets of tags, a higher multiplexing rate is achieved by integrating primer
selection with tag assignment. This integrated optimization is shown in Section
4 to lead to a reduction of up to 50% in the number of required arrays.

2 Universal Array Tag Set Design

The main objective of universal array tag set design is to maximize the number of
tags, which directly determines the number of reactions that can be multiplexed
using a single array. Tags are typically required to have a predetermined length
[1,7]. Furthermore, for correct assay functionality, tags and their antitags must
satisfy the following hybridization constraints:

(H1) Every antitag hybridizes strongly to its tag;
(H2) No antitag hybridizes to a tag other than its complement; and
(H3) There is no antitag-to-antitag hybridization (including hybridization be-

tween two copies of the same tag and self-hybridization), since the formation
of such duplexes and hair-pin structures prevents corresponding reporter
probes from hybridizing to the template DNA and/or leads to undesired
primer mis-extensions.
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Hybridization affinity between two oligonucleotides is commonly character-
ized using the melting temperature, defined as the temperature at which 50% of
the duplexes are in hybridized state. As in previous works [2,3], we adopt a sim-
ple hybridization model to formalize constraints (H1)-(H3). This model is based
on the observation that stable hybridization requires the formation of an initial
nucleation complex between two perfectly complementary substrings of the two
oligonucleotides. For such complexes, hybridization affinity is well approximated
using the classical 2-4 rule [10], which estimates the melting temperature of the
duplex formed by an oligonucleotide with its complement as the sum between
twice the number of A+T bases and four times the number of G+C bases.

The complement of a string x = a1a2 . . . ak over the DNA alphabet {A, C, T, G}
is x̄ = b1b2 . . . bk, where bi is the Watson-Crick complement of ak−i+1. The
weight w(x) of x is defined as w(x) =

∑k
i=1 w(ai), where w(A) = w(T) = 1 and

w(C) = w(G) = 2.

Definition 1. For given constants l, h, and c with l ≤ h ≤ 2l, a set of tags
T ⊆ {A, C, T, G}l is called feasible if the following conditions are satisfied:

– (C1) Every tag in T has weight h or more.
– (C2) Every DNA string of weight c or more appears as substring at most

once in the tags of T .
– (C3) If a DNA string x of weight c or more appears as a substring of a tag,

then x̄ does not appear as a substring of a tag unless x = x̄.

The constants l, h, and c depend on factors such as array manufacturing
technology and intended hybridization conditions. Property (H1) is implied by
(C1) when h is large enough. Similarly, properties (H2) and (H3) are implied by
(C1) and (C2) when c is small enough: constraint (C2) ensures that nucleation
complexes do not form between antitags and non-complementary tags, while
constraint (C3) ensures that nucleation complexes do not form between pairs of
antitags.
Universal Array Tag Set Design Problem: Given constants l, h, and c with
l ≤ h ≤ 2l, find a feasible tag set of maximum cardinality.

Ben-Dor et al. [2] have recently studied a simpler formulation of the problem
in which tags of unequal length are allowed and only constraints (C1) and (C2)
are enforced. For this simpler formulation, Ben-Dor et al. established a construc-
tive upperbound on the optimal number of tags, and gave a nearly optimal tag
selection algorithm based on De Bruijn sequences. Here, we refine the techniques
in [2] to establish a constructive upperbound on the number of tags of a feasible
set for the extended problem formulation, and propose a simple alphabetic tree
search algorithm for constructing feasible tag sets.

The constructive upperbound is based on counting the minimal strings, called
c-tokens, that can occur as substrings only once in the tags and antitags of a
feasible set. Formally, a DNA string x is called c-token if the weight of x is c or
more, and every proper suffix of x has weight strictly less than c. The tail weight
of a c-token is defined as the weight of its last letter. Note that the weight of a
c-token can be either c or c+1, the latter case being possible only if the c-token
starts with a G or a C. As in [2], we use Gn to denote the number of DNA strings
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of weight n. It is easy to see that G1 = 2, G2 = 6, and Gn = 2Gn−1 + 2Gn−2;
for convenience, we also define G0 = 1. In Appendix A we prove the following:

Lemma 1. Let c ≥ 4. Then the total number of c-tokens that appear as sub-
strings in a feasible tag set is at most 3Gc−2 + 6Gc−3 + G c−3

2
if c is odd,

and at most 3Gc−2 + 6Gc−3 + 1
2G c

2
if c is even. Furthermore, the total tail

weight of c-tokens that appear as substrings in a feasible tag set is at most

Input: Positive integers c and l, c ≤ l
Output: Feasible MTSDP(l|C|1) solution T

Mark all c-tokens as available
For every i ∈ {1, 2, . . . , l}, Bi ← A

T ← ∅; Finished ← 0; pos ← 1
While Finished = 0 do

While the weight of B1B2 . . . Bpos < c do

pos ← pos + 1
EndWhile

If the c-token ending B1B2 . . . Bpos is available then

Mark the c-token ending at position pos as unavailable
If pos = l then

T ← T ∪ {B1B2 . . . Bl}
pos ← [the position where the first c-token of B1B2 . . .Bl ends]
I ← {i | 1 ≤ i ≤ pos , Bi �= G}
If I = ∅ then

Finished ← 1
Else

pos ← max{I}
Bi ← A for all i ∈ {pos + 1, . . . , l}
Bpos ← nextbase(Bpos)

EndIf

Else

pos ← pos + 1
EndIf

Else

I ← {i | 1 ≤ i ≤ pos , Bi �= G}
If I = ∅ then

Mark all the c-tokens in B1B2 . . . Bpos−1 as available
Finished ← 1

Else

prevpos ← pos
pos ← max{I}
Mark all the c-tokens in Bpos . . . Bprevpos−1 as available
Bi ← A for all i ∈ {pos + 1, . . . , l}
Bpos ← nextbase(Bpos)

EndIf

EndIf

EndWhile

Fig. 1. The alphabetic tree search algorithm for MTSDP(l|C|1). The nextbase(·) func-

tion is defined by nextbase(A) = T, nextbase(T) = C, and nextbase(C) = G.
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2Gc−1 +4Gc−3 +2G c−3
2

if c is odd, and at most 2Gc−1 +4Gc−3 +G c−2
2

+2G c−4
2

if c is even.

Theorem 1. For every l, h, c with l ≤ h ≤ 2l and c ≥ 4, the number of tags in
a feasible tag set is at most

min

{
3Gc−2 + 6Gc−3 + G c−3

2

l− c + 1
,
2Gc−1 + 4Gc−3 + 2G c−3

2

h− c + 1

}

for c odd, and at most

min

{
3Gc−2 + 6Gc−3 + 1

2G c
2

l − c + 1
,
2Gc−1 + 4Gc−3 + G c−2

2
+ 2G c−4

2

h− c + 1

}

for c even.

Proof. The proof follows from Lemma 1 by observing that every tag contains at
least l − c + 1 c-tokens, with a total tail weight of at least h− c + 1. �	

To generate feasible sets of tags we employ a simple alphabetic tree search
algorithm (see Figure 1). A similar algorithm is suggested in [7] for the problem
of finding sets of tags that satisfy an unweighted version of constraint (C2). We
start with an empty set of tags and an empty tag prefix. In every step we try to
extend the current tag prefix t by an additional A. If the added letter completes
a c-token or a complement of a c-token that has been used in already selected
tags or in t itself, we try the next letter in the DNA alphabet, or backtrack to
a previous position in the prefix when no more letter choices are left. Whenever
we succeed generating a complete tag, we save it and backtrack to the last letter
of its first c-token.

3 Improved Multiplexing by Integrated Primer Selection
and Tag Assignment

Although constraints (H2)-(H3) in Section 2 prevent unintended antitag-to-tag
and antitag-to-antitag hybridizations, the formation of nucleation complexes in-

t p

t’p’

(a)

t p

t’

(c)

t p

t’p’

(d)

t p

t’p’

(b)

Fig. 2. Four types of undesired hybridizations, caused by the formation of nucleation

complexes between (a) a primer and a tag other than the complement of the ligated

antitag, (b) a primer and an antitag, (c) two primers, and (d) two reporter probe

substrings, at least one of which straddles a ligation point
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volving (portions of) the primers may still lead to undesired hybridization be-
tween reporter probes and tags on the array (Figure 2(a)), or between two re-
porter probes (Figure 2(b)-(d)). The formation of these duplexes must be avoided
as it leads to extension misreporting, false primer extensions, and/or reduced ef-
fective reporter probe concentration available for hybridization to the template
DNA or to the tags on the array [3]. This can be done by leaving some of the tags
unassigned. As in [3], we focus on preventing primer-to-tag hybridizations (Fig-
ure 2(a)). Our algorithms can be easily extended to prevent primer-to-antitag
hybridizations (Figure 2(b)); a simple practical solution for preventing the other
(less-frequent) unwanted hybridizations is to re-assign offending primers in a
post-processing step.

Following [3], a set P of primers is called assignable to a set T of tags if there
is a one-to-one mapping a : P → T such that, for every tag t hybridizing to a
primer p ∈ P , either t �∈ a(P) or t = a(p).

Universal Array Multiplexing Problem: Given primers P = {p1, . . . , pm}
and tag set T = {t1, . . . , tn}, find a partition of P into the minimum number of
assignable sets.

For most universal array applications there are multiple primers with the
desired functionality, e.g., for the SNP genotyping assay described in Section 1,
one can choose the primer from either the forward or reverse strands. Since dif-
ferent primers have different hybridization patterns, a higher multiplexing rate
can in general be achieved by integrating primer selection with tag assignment.
A similar integration has been recently proposed in [6] between probe selection
and physical DNA array design, with the objective of minimizing unintended
illumination in photo-lithographic manufacturing of DNA arrays. The idea in
[6] is to modify probe selection tools to return pools containing all feasible can-
didates, and let subsequent optimization steps select the candidate to be used
from each pool. In this paper we use a similar approach. We say that a set of
primer pools is assignable if we can select a primer from each pool to form an
assignable set of primers.

Pooled Universal Array Multiplexing Problem: Given primer pools P =
{P1, . . . , Pm} and tag set T = {t1, . . . , tn}, find a partition of P into the mini-
mum number of assignable sets.

Let P be a set of primer pools and T a tag set. For a primer p (tag t), T (p)
(resp. P(t)) denotes the set of tags (resp. primers of

⋃
P∈P P ) hybridizing with

p (resp. t). Let X(P) = {P ∈ P : ∃p ∈ P, t ∈ T s.t. t ∈ T (p) and P(t) ⊆ P}
and Y (P) = {t ∈ T : P(t) = ∅}. Clearly, in every pool of X(P) we can find a
primer p that hybridizes to a tag t which is not cross-hybridizing to primers in
other pools, and therefore assigning t to p will not violate (A1). Furthermore, any
primer can be assigned to a tag in Y (P) without violating (A1). Thus, a set P
with |X(P)|+ |Y (P)| ≥ |P| is always assignable. The converse is not necessarily
true: Figure 3 shows two pools that are assignable although |X(P)|+|Y (P)| = 0.

Our primer pool assignment algorithm (see Figure 4) is a generalization to
primer pools of Algorithm B in [3]. In each iteration, the algorithm checks
whether |X(P ′)| + |Y (P ′)| ≥ |P ′| for the remaining set of pools P ′. If not, a
primer of maximum potential is deleted from the pools. As in [3], the potential
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p11

p12

P1

p21

p22

P2

t1

t2

Fig. 3. Two assignable pools for which |X(P)| + |Y (P)| = 0

Input: Primer pools P = {P1, . . . , Pm} and tag set T
Output: Triples (pi, ti, ki), 1 ≤ i ≤ m, where pi ∈ Pi is the selected primer for pool i,
ti is the tag assigned to pi, and ki is the index of the array on which pi is assayed

k ← 0
While P �= ∅ do

k ← k + 1; P ′ ← P
While |X(P ′)| + |Y (P ′)| < |P ′| do

Remove the primer p of maximum potential from the pools in P ′

If p’s pool becomes empty then remove it from P ′

End While

Assign pools in P ′ to tags on array k
P ← P \ P ′

End While

Fig. 4. The iterative primer deletion algorithm

of a tag t with respect to P ′ is 2−|P′
(t)|, and the potential of a primer p is the

sum of potentials for the tags in T (p). If the algorithm deletes the last primer
in a pool P , then P is itself deleted from P ′; deleted pools are subsequently
assigned to new arrays using the same algorithm.

4 Experimental Results

Tag Set Selection. The alphabetic tree search algorithm described in Section
2 can be used to fully or selectively enforce the constraints in Definition 1. In
order to assess the effect of various hybridization constraints on tag set size,
we ran the algorithm both with constraints (C1)+(C2) and with constraints
(C1)+(C2)+(C3). For each set of constraints, we ran the algorithm with c be-
tween 8 and 10 for typical practical requirements [1,7] that all tags have length
20 and weight between 28 and 32 (corresponding to a GC-content between 40-
60%). We also ran the algorithm with the tag length and weight requirements
enforced individually.

Table 1 gives the size of the tag set found by the alphabetic tree search
algorithm, as well as the number of c-tokens appearing in selected tags. We
also include the theoretical upper-bounds on these two quantities; the upper-
bounds for (C1)+(C2) follow from results of [2], while the upper-bounds for
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Table 1. Tag sets selected by the alphabetic tree search algorithm

l hmin/ c (C1)+(C2) (C1)+(C2)+(C3)
hmax tags Bound c-tokens Bound tags Bound c-tokens Bound

8 213 275 2976 3584 107 132 1480 1726
20 –/– 9 600 816 7931 9792 300 389 3939 4672

10 1667 2432 20771 26752 844 1161 10411 12780

8 175 224 2918 3584 90 109 1489 1726
– 28/32 9 531 644 8431 9792 263 312 4158 4672

10 1428 1854 21707 26752 714 896 10837 12780

8 108 224 1548 3584 51 109 703 1726
20 28/32 9 333 644 4566 9792 164 312 2185 4672

10 851 1854 11141 26752 447 896 5698 12780

Table 2. Multiplexing results for c = 7 (averages over 10 test cases)

# Pool Algorithm 500 tags 1000 tags 2000 tags
pools size #arrays % Util. #arrays % Util. #arrays % Util.

1 [3] 7.5 30.1 6.0 19.3 5.0 12.1
2 Primer-Del 6.0 38.7 5.0 24.3 4.1 15.5
2 Primer-Del+ 6.0 39.6 4.5 27.3 4.0 16.5
2 Min-Pot 6.0 38.4 5.0 24.2 4.0 15.9

1000 2 Min-Deg 5.8 40.9 4.6 27.0 4.0 16.4
5 Primer-Del 5.0 49.6 4.0 32.5 3.3 21.0
5 Primer-Del+ 4.0 60.4 3.0 43.6 3.0 24.7
5 Min-Pot 4.9 50.6 4.0 33.0 3.0 23.5
5 Min-Deg 4.0 62.0 3.0 44.9 2.7 28.1

1 [3] 13.4 31.8 11.0 19.9 8.7 12.9
2 Primer-Del 10.7 41.0 8.5 26.4 7.0 16.6
2 Primer-Del+ 10.0 43.3 8.0 28.1 6.0 19.1
2 Min-Pot 11.0 39.4 9.0 24.8 7.0 16.3

2000 2 Min-Deg 10.0 43.5 8.0 28.2 6.0 19.2
5 Primer-Del 8.0 56.8 6.1 38.4 5.0 24.5
5 Primer-Del+ 7.1 62.4 6.0 39.7 4.0 30.1
5 Min-Pot 9.2 47.5 7.0 32.9 5.0 24.0
5 Min-Deg 7.0 63.1 5.3 44.2 4.0 30.7

1 [3] 29.5 35.0 23.0 22.6 18.0 14.6
2 Primer-Del 22.2 47.0 17.1 30.9 13.7 19.6
2 Primer-Del+ 22.2 46.8 17.0 30.9 13.1 20.4
2 Min-Pot 25.0 41.5 19.2 27.3 15.0 17.7

5000 2 Min-Deg 22.0 47.3 17.0 31.0 13.0 20.6
5 Primer-Del 16.6 63.8 12.3 43.9 10.0 27.8
5 Primer-Del+ 16.0 65.6 12.0 44.9 9.0 30.6
5 Min-Pot 29.5 35.0 23.0 22.6 18.0 14.6
5 Min-Deg 16.0 65.8 12.0 45.2 9.0 30.8

(C1)+(C2)+(C3) follow from Lemma 1 and Theorem 1. The results show that,
for any combination of length and weight requirements, imposing the antitag-to-
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antitag hybridization constraints (C3) roughly halves the number of tags selected
by the alphabetic tree search algorithm – as well as the theoretical upperbound –
compared to only imposing antitag-to-tag hybridization constraints (C1)+(C2).
For a fixed set of hybridization constraints, the largest tag sets are found by the
alphabetic tree search algorithm when only the length requirement is imposed.
The tag weight requirement, which guarantees similar melting temperatures for
the tags, results in a 10-20% reduction in the number of tags. However, requiring
that the tags have both equal length and similar weight results in close to halving
the number of tags. This strongly suggests reassessing the need for the strict
simultaneous enforcement of the two constraints in current industry designs [1];
our results indicate that allowing small variations in tag length and/or weight
results in significant increases in the number of tags.

Integrated Primer Selection and Tag Assignment. We have implemented
the iterative primer deletion algorithm in Figure 4 (Primer-Del), a variant of it
in which primers in pools of size 1 are omitted – unless all pools have size 1 –
when selecting the primer with maximum potential for deletion (Primer-Del+),

Table 3. Multiplexing results for c = 8 (averages over 10 test cases)

# Pool Algorithm 500 tags 1000 tags 2000 tags
pools size #arrays % Util. #arrays % Util. #arrays % Util.

1 [3] 3.0 86.0 2.0 77.1 2.0 46.3
2 Primer-Del 3.0 90.1 2.0 81.6 2.0 47.8
2 Primer-Del+ 3.0 94.5 2.0 88.5 1.0 50.0
2 Min-Pot 3.0 94.4 2.0 87.9 1.0 50.0

1000 2 Min-Deg 3.0 92.6 2.0 88.8 1.0 50.0
5 Primer-Del 3.0 98.0 2.0 92.6 2.0 49.2
5 Primer-Del+ 3.0 99.5 2.0 97.4 1.0 50.0
5 Min-Pot 3.0 99.4 2.0 97.1 1.0 50.0
5 Min-Deg 3.0 93.4 2.0 93.4 1.0 50.0

1 [3] 6.0 78.2 4.0 64.4 3.0 48.3
2 Primer-Del 5.0 92.3 4.0 66.6 3.0 49.8
2 Primer-Del+ 5.0 93.5 3.0 87.9 2.0 78.7
2 Min-Pot 5.0 93.6 3.0 87.7 2.0 78.1

2000 2 Min-Deg 5.0 90.8 3.0 87.5 2.0 79.6
5 Primer-Del 5.0 98.4 3.0 94.1 2.0 84.8
5 Primer-Del+ 5.0 99.5 3.0 97.1 2.0 91.2
5 Min-Pot 5.0 99.5 3.0 97.0 2.0 90.8
5 Min-Deg 5.0 91.8 3.0 90.6 2.0 91.7

1 [3] 13.0 81.3 8.6 64.7 6.0 49.3
2 Primer-Del 12.0 90.5 7.0 81.1 5.0 61.7
2 Primer-Del+ 11.2 93.8 7.0 81.9 4.0 73.8
2 Min-Pot 12.0 90.4 7.0 81.2 5.0 62.2

5000 2 Min-Deg 12.0 90.1 7.0 81.5 4.0 73.9
5 Primer-Del 11.0 98.9 6.0 96.1 4.0 81.7
5 Primer-Del+ 11.0 99.4 6.0 96.8 3.0 97.1
5 Min-Pot 11.0 99.4 6.0 96.9 4.0 83.1
5 Min-Deg 11.0 94.6 6.0 91.0 3.4 88.0
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and two simple heuristics that first select from each pool the primer of minimum
potential (Min-Pot), respectively minimum degree (Min-Deg), and then run the
iterative primer deletion algorithm on the resulting pools of size 1. We ran all
algorithms on data sets with between 1000 to 5000 pools of up to 5 randomly
generated primers. As in [3], we varied the number of tags between 500 and 2000.

For instance size, we report the number of arrays and the average tag utiliza-
tion (computed over all arrays except the last) obtained by (a) algorithm B in [3]
run using a single primer per pool, (b) the four pool-aware assignment algorithms
run with 1 additional candidate in each pool, and (c) the four pool-aware as-
signment algorithms run with 4 additional candidates in each pool. Scenario (b)
models SNP genotyping applications in which the primer can be selected from
both strands of the template DNA, while scenario (c) models applications such
as gene transcription monitoring, where significantly more than 2 gene specific
primers are typically available.

In a first set of experiments we extracted tag sequences from the tag set of
the commercially available GenFlex Tag Arrays. All GenFlex tags have length
20; primers used in our experiments are 20 bases long as well. Primer-to-tag
hybridizations were assumed to occur between primers and tags containing com-
plementary c-tokens with c = 7 (Table 2), respectively c = 8 (Table 3). The
results show that significant improvements in multiplexing rate – and a corre-
sponding reduction in the number of arrays – are achieved by the pool-aware
algorithms over the algorithm in [3]. For example, assaying 5000 reactions on a
2000-tag array requires 18 arrays using the method in [3] for c = 7, compared
to only 13 (respectively 9) if 2 (respectively 5) primers per pool are available.

Table 4. Multiplexing results (averages over 10 test cases) for two sets of 213 tags of

length 20, one constructed by running the alphabetic tree search algorithm in Section

2 with c = 8 and constraints (C1)+(C2), and the other extracted from the GenFlex

Tag Array

# Pool Algorithm GenFlex tags Tree search tags
pools size #arrays % Util. #arrays % Util.

1 [3] 6.0 90.0 5.0 100.0
2 Primer-Del+ 5.0 100.0 5.0 100.0

1000 2 Min-Deg 5.9 94.0 5.0 100.0
5 Primer-Del+ 5.0 100.0 5.0 100.0
5 Min-Deg 5.2 97.3 5.0 100.0
1 [3] 11.0 90.6 10.0 99.2
2 Primer-Del+ 10.0 98.7 10.0 100.0

2000 2 Min-Deg 10.8 94.2 10.0 99.3
5 Primer-Del+ 10.0 100.0 10.0 100.0
5 Min-Deg 10.1 96.0 10.0 99.3
1 [3] 26.5 91.3 24.0 99.2
2 Primer-Del+ 25.0 97.6 24.0 100.0

5000 2 Min-Deg 25.0 96.3 24.0 99.3
5 Primer-Del+ 24.0 100.0 24.0 100.0
5 Min-Deg 25.0 96.6 24.0 99.3
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In these experiments, the Primer-Del+ algorithm dominates in solution quality
the Primer-Del, while Min-Deg dominates Min-Pot. Neither Primer-Del+ nor
Min-Deg consistently outperforms the other over the whole range of parameters,
which suggests that a good practical meta-heuristic is to run both of them and
pick the best solution obtained.

In a second set of experiments we compared two sets of 213 tags of length
20, one constructed by running the alphabetic tree search algorithm in Section 2
with c = 8 and constraints (C1)+(C2), and the other extracted from the GenFlex
Tag Array. The results in Table 4 show that the tags selected by the alphabetic
tree search algorithm participate in fewer primer-to-tag hybridizations, which
leads to an improved multiplexing rate.
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A Proof of Lemma 1

We first establish two lemmas on self-complementary DNA strings, i.e., strings
x ∈ {A, C, T, G}+ with x = x.

Lemma 2. If x is self-complementary then |x| and w(x) are both even.
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Proof. Let x=x1x2 . . . xp be a self-complementary DNA string. If p=2q + 1, by
the definition of the complement we should have xq+1 =xq+1, which is impossible.
Thus, p = 2q. Since x1 = x2q,x2 = x2q−1,. . ., xq = xq+1, and the weight of
complementary bases is the same, it follows that w(x)=2

∑q
i=1 w(xi). �	

Lemma 3. Let Hn be the number of self-complementary DNA strings of weight
n. Hn = 0 if n is odd, and Hn = Gn/2 if n is even.

Proof. By Lemma 2, self-complementary strings must have even length and
weight. For even n, the mapping x1 . . . xqxq+1 . . . x2q �→ x1 . . . xq gives a one-to-
one correspondence between self-complementary strings of weight n and strings
of weight n/2. �	

Proof of Lemma 1. Let W and S denote weak and strong DNA bases (A or T,
respectively G or C), and let <w> denote the set of DNA strings with weight w.
The c-tokens can be partitioned into the seven classes given in Table 5, depending
on total token weight (c or c + 1) and the type of starting and ending bases.
This partitioning is defined so that, for every c-token x, the class of the unique
c-token suffix of x can be determined from the class of x. Note that x̄ is itself a
c-token, except when x ∈ S<c− 3>WW ∪ S<c− 4>SW.

Table 5. Classes of c-tokens

Class of x c-token suffix of x
W<c − 3>S S<c − 3>W

S<c − 4>S S<c − 4>S

S<c − 3>S S<c − 3>S

W<c − 2>W W<c − 2>W

S<c − 3>W W<c − 3>S

S<c − 3>WW W<c − 3>S

S<c − 4>SW S<c − 4>S

Let Ncls denote the number of c-tokens of class cls occurring in a feasible
tag set.

A.1 c Odd

Since W<c− 3>S ∪ S<c− 3>W can be partitioned into 4Gc−3 pairs {x, x̄} of
complementary c-tokens, and at most one token from each pair can appear in a
feasible tag set,

NW<c − 3>S + NS<c − 3>W ≤ 4Gc−3 (1)

Similarly, class W<c− 2>W can be partitioned into 2Gc−2 pairs {x, x̄} of com-
plementary c-tokens, W<c− 3>S ∪ S<c− 3>WW can be partitioned into 4Gc−3

triples {x, x̄A, x̄T} with x ∈ W<c− 3>S, S<c− 3>W ∪ S<c− 3>WW can be par-
titioned into 4Gc−3 triples {x, xA, xT} with x ∈ S<c− 3>W, and S<c− 4>S ∪
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S<c− 4>SW can be partitioned into 2Gc−4 6-tuples {x, x̄, xA, xT, x̄A, x̄T} with
x ∈ S<c− 4>S. Since at most one c-token can appear in a feasible tag set from
each such pair, triple, respectively 6-tuple,

NW<c − 2>W ≤ 2Gc−2 (2)

NW<c − 3>S + NS<c − 3>WW ≤ 4Gc−3 (3)

NS<c − 3>W + NS<c − 3>WW ≤ 4Gc−3 (4)

NS<c − 4>S + NS<c − 4>SW ≤ 2Gc−4 (5)

Using Lemma 3, it follows that S<c− 3>S contains 2G c−3
2

self-complementary
c-tokens. Since the remaining 4Gc−3 − 2G c−3

2
c-tokens can be partitioned into

complementary pairs each contributing at most one c-token to a feasible tag set,

NS<c − 3>S ≤
1
2

(
4Gc−3 − 2G c−3

2

)
+ 2G c−3

2
= 2Gc−3 + G c−3

2
(6)

Adding inequalities (1), (3), and (4) multiplied by 1/2 with (2), (5), and (6)
implies that the total number of c-tokens in a feasible tag set is at most

2Gc−2 + 8Gc−3 + 2Gc−4 + G c−3
2

= 3Gc−2 + 6Gc−3 + G c−3
2

Furthermore, adding (1), (2), and (3) with inequalities (5) and (6) multiplied by
2 implies that the total tail weight of the c-tokens in a feasible tag set is at most

2Gc−2 + 12Gc−3 + 4Gc−4 + 2G c−3
2

= 2Gc−1 + 4Gc−3 + 2G c−3
2

A.2 c Even

Inequalities (1), (3), and (4) continue to hold for even values of c. Since c− 3 is
odd, S<c− 3>S contains no self-complementary tokens and can be partitioned
into 2Gc−3 pairs {x, x̄},

NS<c − 3>S ≤ 2Gc−3 (7)

By Lemma 3, there are 2G c−4
2

self-complementary tokens in S<c− 4>S. There-
fore S<c− 4>S ∪ S<c− 4>SW can be partitioned into 2G c−4

2
triples {x, xA, xT}

with x ∈ S<c− 4>S, x = x̄ and 2Gc−4 − G c−4
2

6-tuples {x, x̄, xA, xT, x̄A, x̄T}
with x ∈ S<c− 4>S, x �= x̄. Since a feasible tag set can use at most one c-token
from each triple and 6-tuple,

NS<c − 4>S + NS<c − 4>SW ≤ 2Gc−4 + G c−4
2

(8)

Using again Lemma 3, we get

NW<c − 2>W ≤ 2Gc−2 + G c−2
2

(9)

Adding inequalities (1), (3), and (4) multiplied by 1/2 with (7), (8), and (9)
implies that the total number of c-tokens in a feasible tag set is at most
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2Gc−2 + 8Gc−3 + 2Gc−4 + G c−2
2

+ G c−4
2

= 3Gc−2 + 6Gc−3 +
1
2
G c

2

Finally, adding (1), (3), and (9) with inequalities (7) and (8) multiplied by 2
implies that the total tail weight of the c-tokens in a feasible tag set is at most

2Gc−2 + 12Gc−3 + 4Gc−4 + G c−2
2

+ 2G c−4
2

= 2Gc−1 + 4Gc−3 + G c−2
2

+ 2G c−4
2

�	
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Abstract. Gene Selection is one class of most used data analysis algorithms on
microarray datasets. The goal of gene selection algorithms is to filter out a small
set of informative genes that best explains experimental variations. Traditional
gene selection algorithms are mostly single-gene based. Some discriminative
scores are calculated and sorted for each gene. Top ranked genes are then se-
lected as informative genes for further study. Such algorithms ignore completely
correlations between genes, although such correlations is widely known. Genes
interact with each other through various pathways and regulative networks. In this
paper, we propose to use, instead of ignoring, such correlations for gene selec-
tion. Experiments performed on three public available datasets show promising
results.

1 Introduction

Microarray experiments enable biologists to monitor expression levels of thousands of
genes or ESTs simultaneously [1,7,18]. Short sequences of genes or ESTs tagged with
fluorescent materials are printed on a glass surface. The slice is then exposed to sample
solution for hybridization (base-pairing). mRNA molecules are expected to hybridize
with short sequences matching part of their complement sequences. After hybridization
the slice is scanned and goes through various data processing steps including image
processing, quality control and normalization [4]. The resulting dataset is a two dimen-
sional array with thousands of rows (genes) and tens of columns (experiments). Element
at ith row and jth column in such an array is the expression level measure for gene i in
experiment j. When tissue samples used in the experiments are labeled (e.g., sample is
cancer tissue or normal tissue), sample classification can be performed on such dataset.
New samples are classified based on their gene expression profiles.

Such dataset poses special challenge for pattern recognition algorithms. The main
obstacle is the limited number of samples due to practical and financial concerns.
This results in the situation where the number of features (or genes) well outnumbers
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the number of observations. The term “curse of dimensionality” and “peaking phe-
nomenon” are coined in the machine learning and pattern recognition community, re-
ferring to the phenomenon that inclusion of excessive features may actually degrade the
performance of a classifier if the number of training examples used to build the clas-
sifier is relatively small compared to the number of features [11]. Typical treatment is
to reduce the dimensionality of the feature space before classification using feature ex-
traction and feature selection. Feature extraction algorithms create new features based
on transformation and/or combination of original features while feature selection al-
gorithms aim to select a subset of original features. Techniques like PCA and SVD
have been used to create salient features [9,13] for sample classification on microar-
ray datasets. Feature selection, or in our case, gene selection generates a small set of
informative genes, which not only leads to better classifiers, but also enables further
biological investigation [8,14,16].

In order to find the optimal subset of features that maximizes some feature selection
criterion function (we assume the higher value the criterion function, the better the fea-
ture subset), straightforward implementation would require evaluation of the criterion
function for each feature subset, which is a classic NP hard problem. Various heuris-
tics and greedy algorithms have been proposed to find sub-optimal solutions. Assuming
independence between features, one attempt is to combine small feature subsets with
high individual scores. This heuristic is widely used for gene selection. A class of gene
selection algorithms calculates discriminative scores for individual genes and combines
top ranked genes as selected gene set. We refer to this class of algorithms single gene
based algorithms. Various discriminative scores have been proposed, including statis-
tical tests (t-test, F-test) [3], non-parametric tests like TNoM [2], mutual information
[22,23], S2N ratio (signal to noise ratio) [7] , extreme value distribution [15] and SAM
[19] etc. Although simple, this class of algorithms is widely used in microarray data
analysis and proven to be effective and efficient.

However, the assumption of independence between genes over simplifies the com-
plex relationship between genes. Genes are well known to interact with each other
through gene regulative networks. As a matter of fact, the common assumption of clus-
ter analysis on microarray dataset [12] is that co-regulated genes have similar expression
profiles. Bø [3] proposed to calculate discriminant scores for a pair of genes instead of
each individual gene. Several of recent researches on feature selection especially gene
selection [10,20,21,23] took into consideration the correlation between genes explic-
itly by limiting redundancy in resulting gene set. Heuristically, selected genes need to
first have high discriminative scores individually and secondly not correlate much with
genes that have already been selected. Generic feature selection algorithms like SFFS
(sequential forward floating selection), SBFS (sequential backward floating selection),
etc. have also been used for selecting informative genes from microarray datasets.

In this paper, we propose a totally different approach. Instead of trying to get rid of
correlation in the selected gene set, we examine whether such correlation itself is a good
predictor of sample class labels. Our algorithm is a supervised feature extraction algo-
rithm based on new feature “virtual gene”. “Virtual genes” are linear combinations of
real genes on a microarray dataset. Top ranked “virtual genes” are used for further anal-
ysis, e.g., sample classification. Our experiments with three public available datasets
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suggest that correlations between genes are indeed very good predictors of sample class
labels. Unlike typical feature extraction algorithms, the “virtual gene” bears biological
meaning: the weighted summation or difference of expression levels of several genes.

The rest of this paper is organized as follows. We present the concept of “virtual
gene” and the “pairwise virtual gene” algorithm in Sec. 2. Both a synthetic and a real
example from Alon dataset [1] are given. In Sec. 3, extensive experimental results are
reported using three public available datasets. We give our conclusion and future work
of this paper in Sec. 4.

2 Virtual Gene: A Gene Selection Algorithm

2.1 Gene Selection for Microarray Experiments

In this section we formalize the problem of gene selection for microarray datasets.
Symbols used in this section will be used throughout this paper.

Let G be the set of all genes that are used in one study, S be the set of all exper-
iments performed, L be the set of sample class labels of interest. We assume G ,S ,L
are fixed for any given study. Let n = |G | be the total number of genes, m = |S | be the
total number of experiments and l = |L| be the total number of class labels. A gene
expression dataset used in our study can be defined as E = (G ,S ,L,E), where L is a
list of sample class labels such that for s ∈ S , L(s) ∈ L is the class label for sample s;
expression matrix E is an n×m matrix of real numbers. E(g,s), where g ∈ G ,s ∈ S , is
the expression level of gene g in experiment s. For simplicity of presentation, we use a
subscripting scheme to refer to elements in E . Let E(G,S) = (G,S,L′,E ′) where G⊆G
and S⊆ S . L′ is a sublist of L containing class labels for samples S, E ′ is the subarray of
E containing values of expression levels for genes G and experiments S. We also write
E ′ = E(G,S). We further use L(S) to denote a list of class labels for the set of experi-
ments S. Given training expression data Etrain = (G ,Strain,Ltrain,Etrain), the problem of
sample classification is to build a classifier that predicts Lnew for new experiment result
Enew = (G ,Snew,Lmissing,Enew). Lmissing indicates that the class labels of samples Snew

have not been decided yet. The problem of gene selection is to select a subset of genes
G′ ⊂ G based on Etrain so that classifiers built from Etrain(G′,Strain) predict Lnew more
accurately than classifiers built from Etrain. We use n′ as the number of features being
selected, or n′ = |G′|.

2.2 An Example

Consider the following two examples as shown in Figure 1. In each figure, the expres-
sion levels of two genes are monitored across several samples. Samples are labeled
either cancerous or normal. In both cases, the expression levels of the selected genes
vary randomly across the sample classes. However, their correlation is a good predictor
of class labels. Virtual gene expression level is obtained using the Def. 2. In the case
of Alon [1] dataset, the expression levels of H09719 are generally higher than that of
L07648 in cancer tissues. In normal tissues, on the contrary, L07648 expresses con-
sistently higher except in one sample. Such correlations could be good predictors of
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Fig. 1. Examples of gene pair being better predictor of class labels than single gene

sample class labels. However, all feature selection algorithms listed in the previous sec-
tion can not find and use such correlations. Single gene based algorithms will ignore
both genes since neither of them is a good predictor of sample class labels in its own
right. Correlation based algorithms will actually remove such correlations, should any
of the genes have been selected.

2.3 Virtual Gene Algorithm

Definition 1. Virtual Gene is a triplet VG = (Gv,W,b) where Gv ⊆ G is a set of con-
stituent genes, |Gv|= nv, W is a matrix of size nv×1, b is a numeric value. The expres-
sion levels of a virtual gene is determined using Definition 2.

Definition 2. (Virtual Gene Expression) Given a virtual gene V G = (Gv,W,b) and
gene expression matrix E, where |Gv| = nv, E is an nv ×mv expression matrix, the
virtual gene expression VE of a virtual gene VG is a linear combination of expression
matrix E. VE(VG,E) = W ′ ×E + b, where W ′ is the transpose of W .

A virtual gene is a triplet VG = (G,W,b) as defined in Def. 1. Parameters W and
b are chosen using FLD (fisher linear discriminant) to maximize linear separability
between sample classes as listed in Algorithm 1. Discriminative power of a virtual gene
expression with respect to sample classes can be measured using normal single gene
based scores. We use t-score in this paper for this purpose. Pairwise virtual gene is
a special case of virtual gene where the number of genes involved is limited to two.
In this case, only the correlations between a pair of genes are considered. By limiting

Algorithm 1 gen vg : Calculating Virtual Gene From Training Data
Require: E = (G,S,L,E) as gene expression data.
Ensure: V G = (G,W,b) as a virtual gene.
1: (W,b)← f ld(E,L), (W,b) is the model returned by f ld algorithm.
2: return (G,W,b)

Synthetic Example
Significant Gene Pair in Alon dataset
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virtual gene to gene pairs, computation can be carried out efficiently. According to our
experiments, it performs well on three public available datasets.

Definition 3. Pairwise virtual gene and its expression are special cases for virtual
gene and its expression, where the number of genes involved is limited to two.

Exhaustive examination of all pairwise virtual genes requires O(n2) computation
where n is the number of genes. For a large number of genes, exhaustive search of
all gene pairs becomes inefficient. Such exhaustive search also invites unwanted noise
since not all gene pairs bare biological meaning. For example, for genes that are ex-
pressed in different locations in a cell, in different biological processes, without biolog-
ical interactions, their relative abundance may not be biologically significant. Ideally,
only gene pairs with some biological interaction shall be examined. We approximate
this using a gene clustering approach. Each gene cluster corresponds roughly to some
biological pathways. By limiting search among the gene pairs from the same gene clus-
ter, we not only focus ourselves on these gene pairs that are more likely to interact
biologically, but also make our gene selection algorithm much faster.

Algorithm 2 details the pairwise virtual gene selection algorithm. Genes are first
clustered based on their expression levels. For each pair of genes in the same cluster,
virtual gene expression is calculated according to Def. 2. A single gene discriminative
score with respect to the sample class labels is then derived from the virtual gene expres-
sion. All within-cluster pairwise virtual gene expression scores are calculated and stored

Algorithm 2 pairwise vg : Pairwise Virtual Gene Selection
Require: E = (G,S,L,E); k as the number of genes to be selected;α;β
Ensure: VGS: as set of pairwise virtual genes V G = (G,W,b)
1: Initialize VGS to be an empty set. Initialize pair score to be a sparse n×n array.
2: Cluster genes based on their expression levels in E. Result stores in Clusters.
3: for each gene cluster G′ ∈Clusters do
4: for all gene g1 ∈ G′ do
5: for all gene g2 ∈ G′ and g2 �= g1 do
6: vg← gen vg(E((g1,g2),S))
7: ve← VE(vg,E((g1,g2),S))
8: pair score[g1,g2]← t-score(ve,L)
9: end for

10: end for
11: end for
12: for i = 1 to k do
13: (g1,g2)← argmax

(g1,g2)
(pair score[g1,g2])

14: vg← gen vg(E((g1,g2),S))
15: add vg to VGS
16: multiply pair score that involves g1 or g2 by α.
17: multiply pair score that involves genes in same cluster of g1 or g2 by β.
18: pair score[g1,g2]← minimum value
19: end for
20: return VGS
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for the next stage of analysis. The best scored virtual gene is then selected and pairwise
scores are modified by two parameters. Pairwise scores of virtual genes that share con-
stituent genes with the selected virtual gene are degraded by a constant α ranging [0,1].
This dampens the effect of a single dominant salient gene. In the extreme case where
α is set to 0, once a virtual gene is selected all virtual genes sharing constituent genes
will not be further considered. The second parameter affecting the virtual gene selec-
tion is β, which controls how likely virtual genes in the same gene cluster are selected.
Different gene clusters correspond to different regulative processes in a cell. Choosing
genes from different gene clusters broadens the spectrum of the selected gene set. β also
ranges [0,1]. In the extreme situation where β = 0, only one virtual gene will be selected
for each gene cluster. After modifying pairwise scores, the algorithm begins next loop
to find the highest scored virtual gene. This process repeats until k virtual genes have
been selected. For performance comparison of the pairwise virtual gene algorithm and
single gene based algorithms, each pairwise virtual gene counts for two genes. For ex-
ample, the performance of selecting 50 genes using single gene based algorithms would
be compared to performance of selecting top 25 pairwise virtual genes.

2.4 Complexity of the Pairwise Virtual Gene Algorithm

The pairwise virtual gene selection algorithm runs in three stages: (1) cluster genes
based on expression profile (lines 1-2), (2) calculate discriminative scores for the pair-
wise virtual gene (lines 3-11), and (3) select pairwise virtual genes with best discrimi-
native scores (lines 12-20). We assume gene cluster number to be θ and n,m,k,α,β as
discussed above.

In the first stage of analysis, k-means algorithm runs in O(θn). In the second stage,

the actual number of gene pairs examined is O( n2

θ ), assuming gene clusters obtained in
the previous stage are of roughly the same size. For each gene pair, the calculation of
the pairwise virtual gene and its discriminative score require O(m2). Time complexity

of the second stage is O(m2n2

θ ). Stage three requires O(k( n2

θ +m2 +n+ n
θ )) time. Putting

them together, we have time complexity of O(θn + m2n2

θ + k(m2 + n2

θ )). The most time

consuming part in the previous expression is the term O(m2n2

θ ). In our experiments, we
choose θ ∼ Θ(n). Considering the fact that k < n, the time complexity of Algorithm 2
becomes O(n2 + nm2). The O(n2) term is for k-means clustering, which runs rather
quickly. If no clustering is performed in stage 1 (or θ = 1, one gene cluster), the time
complexity becomes O(n2m2 + kn2). The savings in computation time is obvious.

Majority of space complexity for the pairwise virtual gene selection algorithm comes
from stage 2 in the algorithm where pairwise discriminative scores are recorded. The
space needed for that is O( n2

θ ) using sparse array. Under typical situation if we choose θ∼
Θ(n), space complexity of Algorithm 2 becomes O(n), although with a large constant.

3 Experiments

In this section, we report extensive experimental results on three publicly available mi-
croarray datasets [1][7][18]. In each case, we study the gene selection problem in the
context of two class sample classification.
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3.1 Colon Cancer Dataset

Data Preparation. This dataset was published by Alon [1] in 1999. It contains mea-
surements of expression levels of 2000 genes over 62 samples, 40 samples were from
colon cancer patients and the other 22 samples were from normal tissue. The minimum
value in this dataset is 5.8163, thus no thresholding is done. We perform base 10 log-
arithmic transformation and then for each gene, subtract mean and divide by standard
deviation. We will refer to this dataset as Alon dataset in the rest of the paper.

Experiments. We performed three experiments on this dataset to evaluate performance
of the four feature selection algorithms. The main purpose of each experiment is listed
as follows:

1. Compare classification accuracy and the stability of classification accuracy between
single gene t-score [3], single gene S2N score [1], clustered pairwise t-score [3]
(their all pair method modified by limiting computation within gene clusters), pair-
wise virtual gene. We refer this experiment as alon.1 in this paper.

2. Study how the choice of number of clusters in the pairwise virtual gene algorithm
affects classification accuracy and the stability of classification accuracy. We refer
this experiment as alon.2 in this paper.

3. Study how the choice of initial cluster centers in the pairwise virtual gene algo-
rithm affects gene selection performance. The pairwise virtual gene algorithm uses
the k-means clustering algorithm to first divide genes into gene clusters. K-means
algorithm is not stable in the sense that by supplying different initial cluster centers,
different clustering results will be returned. We refer this experiment as alon.3 in
this paper.

For experiment alon.1, we use three classification algorithms to measure the perfor-
mance of the feature selection algorithms. The classification algorithms we use are knn
(k-nearest neighbor classifier, with k = 3), svm (support vector machine, with radial
kernel) [5] and a linear discriminant method dld (diagonal linear discriminant analysis)
[17]. For cross validation of classification accuracy, we use a 2-fold cross validation
method, which is the same as leave-31-out method used in [3]. We run 2-fold cross
validation 100 times to obtain an estimate of classification accuracy. Standard deviation
of classification accuracy is also reported here. The number of genes to be selected is
limited to 100, as it is reported in the literature[1] that even top 50 genes produce good
classifiers.

For experiment alon.2, we use knn with k = 3 as classifier. We experimented with
clustering genes into 8,16,32,64,128,256 clusters in stage one of pairwise virtual gene
algorithm and then measure 2-fold classification accuracy as stated in the previous
paragraph.

For experiment alon.3, we use knn with k = 3 as classifier. Same experiments are
repeated for 20 times with randomly generated initial cluster centers for stage one
of pairwise virtual gene algorithm. Performance of our feature selection methods is
reported.

In all experiments, we measure performance of selecting from 2 to 100 genes, in-
creasing by 2 at a time. We set α = 0,β = 1 in all these experiments. As stated before,
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when comparing single gene-based gene selection algorithm with pairwise virtual gene
algorithm, we treat each pairwise virtual gene as two genes. Thus the performance of
classifiers built from top n genes are compared with the performance of classifiers built
from top n

2 pairwise virtual genes.

Results. Results of our experiment alon.1 are summarized in Figures 2, 3, 4. In each
figure, the left part plots classification accuracy against number of genes used to build
classifier and the right part shows standard deviations of classification accuracy. By
calculating the standard deviation, we can roughly estimate how close the mean classi-
fication accuracy is to the real classification accuracy. Each figure shows classification
accuracy we archived using different classification methods.

From these experiments, we conclude that on Alon dataset, the pairwise virtual
gene algorithm performs the best. When DLD and KNN classifiers are used, pairwise
virtual gene algorithm is significantly better than other feature selection methods we
tested. When SVM is used, all FSS methods produce comparable prediction accuracy
with pairwise virtual gene algorithm enjoying small advantage over single gene based
algorithms. The pairwise virtual gene algorithm is also most stable, in the sense that it
has the smallest standard deviation of classification accuracy.

When testing using DLD classifier, the pairwise virtual gene algorithm results in
5%-10% increase in prediction accuracy over other FSS methods and almost 50% de-
crease in its standard deviation. The experiment with KNN classifier generates similar
result with the pairwise virtual gene algorithm leading other FSS methods in classifica-
tion accuracy by 2% and having the smallest variance.

Experiments with SVM generate more mixed results in which all four FSS methods
having comparable classification accuracy. The single gene t-score and single gene S2N
gene selection algorithms perform better than the pairwise virtual gene and pairwise t-
score algorithms when the number of genes selected is less than 20. When more genes
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Fig. 2. Result of experiment alon.1. Prediction accuracy of four feature selection methods on Alon
dataset using DLD classifier. Left figure shows prediction accuracy against the number of genes
used to build DLD classifier. Right figure shows the standard deviation of prediction accuracy
against the number of genes.
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Fig. 3. Result of experiment alon.2. Prediction accuracy of four feature selection methods on
Alon dataset using knn classifier (k=3). Left figure shows prediction accuracy against the number
of genes used to build knn classifier. Right figure shows the standard deviation of prediction
accuracy against the number of genes.
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Fig. 4. Result of experiment alon.3. Prediction accuracy of four feature selection methods on
Alon dataset using SVM classifier. In this experiment, we used a radial kernel for SVM. Left
figure shows prediction accuracy against the number of genes used to build SVM classifier. Right
figure shows the standard deviation of prediction accuracy against the number of genes.

are selected, the pairwise virtual gene and pairwise t-score algorithms perform con-
stantly better than the single t-score and single gene S2N algorithms. When the number
of genes selected is more than 50, the pairwise virtual gene and pairwise t-score algo-
rithms outperform the other two FSS algorithms by 1% in classification accuracy. The
variations in classification accuracy still favors strongly towards pairwise methods with
the pairwise virtual gene algorithm having the smallest variation.

For experiment alon.2, we measure the performance of the pairwise virtual gene
algorithm setting the number of cluster in stage 1 of the algorithm to be 8,16,32,64,
128,256. The results are summarized in Figure 5. We see an overall trend of decline in
performance as the number of clusters increases. The classification performance peaks
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Fig. 5. Prediction accuracy and its standard deviation of knn (k=3) using different number of
clusters in k-means algorithm (stage 1 of algorithm 2). Prediction accuracy degrade as the number
of clusters increase. However, the within-cluster gene pairs (256-cluster version vs. 8-cluster
version) retain much information as a reduction of 99.9% of pairs results only around 2% decrease
in prediction accuracy.

when 8/16 clusters are used, indicating cluster numbers suitable for this dataset in that
range. Compare two extremes, the 8-cluster version and the 256-cluster version, pair-
wise virtual gene algorithm performs about 2% better in classification accuracy using
knn (k = 3) classifier when 8 clusters are used. This is somewhat we have expected
since when using 256 clusters, compared to the 8-clusters version, the computed pair-
wise score is around 1

322 or around 0.1%.
It is worth noting that we used a rather crude cluster analysis algorithm, the k-

means algorithm. By computing only 0.1% (or omitting 99.9%) of all possible pairs in
a 8-cluster version of the algorithm, we still get strong prediction accuracy, only losing
about 2% of it. This indicates that correlations between genes within clusters generated
by the k-means algorithm carry much more information on sample class distinction. We
also expect to further improve pairwise virtual gene algorithm by using more sophisti-
cated cluster analysis algorithms.

Since the k-means cluster algorithm is not stable, in the sense that initial cluster
center assignments will affect clustering result, we perform experiment alon.3 to de-
termine how the pairwise virtual gene algorithm is affected by it. We run 2-fold cross
validation 100 times. Each time, the pairwise virtual gene algorithm is run 20 times
with randomly generated initial gene clusters to select 20 different sets of virtual genes.
The performance of 3-nn classifier using each of the 20 virtual gene sets is measured.
Figure 6 plots the mean value of the classification accuracy, with its standard deviation.
From this experiment, we conclude although k-means cluster algorithm is not stable,
it performs well enough to capture important gene pairs. Twenty different initial clus-
ter centers result in twenty different pairwise virtual gene selection. However, the final
classification accuracy measured with 3-nn (3 nearest neighbor) classifier using these
twenty different pairwise virtual gene selections does not vary much (having standard
deviation of 0.3% to 0.5%). This justifies the use of the unstable k-means algorithm in
our algorithm.
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Fig. 6. The boxplot of mean 3-nn classification accuracy using pairwise virtual gene algorithm
with 20 different initial clusters

3.2 Leukemia Dataset

Data Preparation. This dataset was published by Golub etc. [7] in 1999. It consists
of 72 samples, of which 47 samples were acute lymphoblastic leukemia (ALL) and rest
25 samples were acute myeloid leukemia (AML). 7129 genes were monitored in their
study. This dataset contains a lot of negative intensity values. We use the following steps
(similar to Dudoit etc.[6]) preprocessing the dataset before feed to our algorithm. First
we threshold the data set with floor of 1 and ceiling of 16000. Then we filter out genes
with max/min <= 5 or (max−min)<= 500, where max and min are the maximum and
minimum expression values of a gene. After these two steps, the resulting 3927 genes
are transformed using base 10 logarithmic and then the expression levels for each gene
are normalized. We will refer to this dataset as Golub dataset in the rest of this paper.

Experiments. We perform experiments to compare feature selection performance on
Golub dataset. Two classifiers (KNN, DLD) are used. Classification accuracies of these
classifiers using four feature selection algorithms (single gene t-score[3], single gene
S2N score[7], pairwise t-score, pairwise virtual gene) are reported here. In all experi-
ments, we measure performance of selecting from 2 to 100 genes, increasing by 2 at a
time. We set α = 0,β = 0.8 in all experiments.

Results. This dataset contains roughly four times the number of genes of Alon dataset.
Straightforward computing of all gene pairs becomes intractable. Based on results ob-
tained in the previous section on Alon dataset, we set the number of clusters to be 256.
Results are shown in Figures 7, 8. For DLD classifier, when the number of selected
genes is larger than 20, pairwise virtual gene algorithm performs consistently better
than single gene based algorithms, though not by a large margin. For knn classifier,
pairwise virtual gene algorithm performs consistently better than all other methods we
tested. Standard deviations of the classification accuracy declines as number of genes
increase with one abnormal jump for single gene based methods using DLD classi-
fier. All feature selection methods have similar variations in the classification accuracy.
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Fig. 7. Prediction accuracy of four feature selection methods on Golub dataset using DLD clas-
sifier. Left figure shows prediction accuracy against the number of genes used to build DLD
classifier. Right figure shows the standard deviation of prediction accuracy against the number of
genes.
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Fig. 8. Prediction accuracy of four feature selection methods on Golub dataset using knn classi-
fier (k=3). Left figure shows prediction accuracy against the number of genes used to build knn
classifier. Right figure shows the standard deviation of prediction accuracy against the number of
genes.

Overall, the pairwise virtual gene algorithm performs better than the single gene based
algorithms on this dataset.

3.3 Multi-class Cancer Dataset

Ramaswamy etc. [18] reported study of oligonucleotide microarray gene expression
involving 218 tumor samples spanning 14 common tumor types and 90 normal tissue
samples. The expression levels of 16063 genes and expressed sequence tags were mon-
itored in their experiments. The author separated the tumor samples into training set
(144 samples) and testing set (54 samples). The rest 20 samples are poorly differenti-
ated adenocarcinomas, which we did not include in our study. The training tumor set
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Fig. 9. Prediction accuracy of 4 feature selection methods on multi-class dataset using knn classifier
(k=3). Left figure shows prediction accuracy against the number of genes used to build knn classifier.
Right figure shows the standard deviation of prediction accuracy against the number of genes.
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Fig. 10. Prediction accuracy of 4 feature selection methods on multi-class dataset using DLD clas-
sifier. Left figure shows prediction accuracy against the number of genes used to build knn classi-
fier. Right figure shows the standard deviation of prediction accuracy against the number of genes.

of 144 samples and 90 normal tissue samples are combined together for our study. We
refer this data set as multi-class dataset in the rest of our paper.

Data Preparation. Like the Leukemia data set, multi-class dataset contains a lot of
negative values. As a data preprocessing step, we apply a thresholding of 1 and filter
out genes with max/min <= 5 or (max−min)<= 500. The resulting dataset has 11985
genes. Logarithmic transformation and normalization are then performed before data
are fed to gene selection algorithms. It is worth nothing that in the original paper by
Ramaswamy, etc.[18] all 16063 genes (or ESTs) were used for classification. For our
study of feature selection, the application of max/min <= 5 or (max−min) <= 500
filter makes sense since we are only interested in several top ranked genes.

Experiments. We measure performance of four feature selection algorithms using knn
and dld classifiers. 2-fold cross validation is performed 100 times. Experiments are
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in the same setting as for Alon and Golub datasets. In all experiments, we measure
performance of selecting from 2 to 100 genes, increasing by 2 at a time. We set α = 0,
β = 0.8 in all experiments.

Results. In this experiment, we set the number of clusters to be used to 400. Result
of knn classifier shows single gene based algorithms performs better, but within 1%
of accuracy compared to pairwise virtual gene algorithm. Clustered pairwise t-score
algorithm performs as good as single gene based algorithms. As the number of genes
selected increases, the differences in performance gradually converge.

4 Conclusion and Future Work

Gene selection is crucial both for building a good sample classifier and for select-
ing smaller gene set for further biological investigation. Feature extraction algorithms
(PCA, SVD, etc.), single gene based discriminative scores (t-score, S2N, TNoM, infor-
mation gain, etc.) and correlation based algorithms have been proposed for this purpose.
In this paper, we proposed a totally different approach. Instead of trying to minimize
correlations within the selected gene set, we examined whether such correlations are
good predictors of sample class labels. Virtual gene is a linear combination of a set of
real genes. Our experiments confirm our assumption that the correlations between genes
are indeed good predictors of sample class labels, better in many cases than single gene
based discriminative scores. There are biological explanation for this: genes interact
with each other. The relative abundance of genes is a better predictor than the absolute
values. Using gene clustering algorithms to limit gene pair selection seems promising.
Our experiments show that by calculating pairwise scores for only a very small portion
(0.5%) of all possible gene pairs, decent classification performance can be achieved.
This in turn shows most useful pairwise correlations are contained within gene clusters.

Our algorithm still has space for improvement. First but not least, we are interested
in combining single gene based scores and virtual gene. In contrast to correlation based
gene selection approaches, we can select top genes with high individual scores and top
correlations between genes. We also want to examine larger virtual genes, virtual genes
that combine more than two genes. Gene clustering is only a crude way of grouping
co-regulated genes. We are currently working on using gene ontology as a way to group
genes. Our algorithm is quite open, several other algorithms (e.g., cluster analysis and
discriminative power of single gene) can be plugged into our algorithm without much
modification. We leave this as future work as well.
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